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Abstract

Remote attestation is a technology for establishing trust in a remote comput-

ing system. Core to the integrity of the attestation mechanisms themselves are

components that orchestrate, cryptographically bundle, and appraise measure-

ments of the target system. Copland is a domain-specific language for specifying

attestation protocols that operate in diverse, layered measurement topologies. In

this work we formally define and verify the Copland Virtual Machine alongside

a dual generalized appraisal procedure. Together these components provide a

principled pipeline to execute and bundle arbitrary Copland-based attestations,

then unbundle and evaluate the resulting evidence for measurement content and

cryptographic integrity. All artifacts are implemented as monadic, functional pro-

grams in the Coq proof assistant and verified with respect to a Copland reference

semantics that characterizes attestation-relevant event traces and cryptographic

evidence structure. Appraisal soundness is positioned within a novel end-to-end

workflow that leverages formal properties of the attestation components to dis-

charge assumptions about honest Copland participants. These assumptions in-

form an existing model-finder tool that analyzes a Copland scenario in the context

of an active adversary attempting to subvert attestation. An initial case study

exercises this workflow through the iterative design and analysis of a Copland

protocol and accompanying security architecture for an Unpiloted Air Vehicle

demonstration platform. We conclude by instantiating a more diverse benchmark

of attestation patterns called the “Flexible Mechanisms for Remote Attestation”,

leveraging Coq’s built-in code synthesis to integrate the formal artifacts within

an executable attestation environment.
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Chapter 1

Introduction

1.1 From Trust to Remote Attestation

Security decisions often depend on trust in the components or participants

that make up the context of those decisions. However, the term “trust” is heav-

ily overloaded throughout the fields of computing [23], psychology, sociology, and

beyond. A useful baseline definition in computing is the one provided by the

Trusted Computing Group: “An entity can be trusted if it always behaves in the

expected manner for the intended purpose” [67]. A more practical refinement of

the notion of trust for our purposes is outlined in Andrew Martin’s The ten-page

introduction to Trusted Computing [43], where he asserts the following require-

ments for a computing platform to be trusted: 1) strong identification of itself,

and 2) strong identification of its current configuration and running software. This

notion of trust goes beyond more shallow forms of authentication, since experi-

ence shows that a motivated attacker will compromise layered systems despite a

well-intentioned user at the surface.
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One technology for establishing trust in a remote computing system is remote

attestation. Remote attestation is the activity of making a claim about properties

of a target by supplying evidence to an appraiser over a network [12]. The target

is a platform providing a useful service or protecting a sensitive resource, while an

appraiser is a remote entity that seeks evidence of the target’s trustworthiness.

A simple example of such a claim would be: Target platform T is running an

authentic instance of application E, where E handles sensitive data in a manner

acceptable to the appraiser. Figure 1.1 diagrams a simple attestation architecture

for this scenario. The motivation of the appraiser is to increase its trust in further

interactions with application E running on T with respect to the sensitive data.

T
E

Data
Appraiser

Request

Evidence

Figure 1.1. A simple remote attestation architecture: An appraiser
makes a request over a network to target(T). T responds with evidence
as to the trustworthiness of executable(E).

In an ideal scenario, assume E has been formally verified for functional correct-

ness: the complete behavior of E is captured in a specification and proven correct

with respect to the appraiser’s expectations. Is it then su�cient to hash E’s code

at load-time, start its execution, and send the hash back to the appraiser? There

are two immediate shortcomings of this attestation strategy. First, it says nothing

about the identity of the system making the claim about E. A hash of the code

proves only that someone knows what constitutes a valid instance of E. We can

remedy this by equipping the target with a digital signature capability. Figure 1.2
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shows an updated architecture for T with an authentication component AUTH.

While AUTH remains abstract here, its instantiation on a real system could be

a cryptographic library, stand-alone oracle, or even a hardware co-processor. It’s

role is to uniquely identify the platform and bind that identity to evidence. With

AUTH we can authenticate a genuine hash of E, but it still remains to prove that

E is in fact running on T. Still absent from this architecture is the component per-

forming the hash of E. In the attestation literature these components are known

as measurers [12], and are responsible for examining and reporting the configura-

tion and operation of other components. In our simple scenario, the measurement

in question is a load-time hash of E’s binary.

T

AUTH
Appraiser

Request

Evidence

E

Data

Figure 1.2. Adding AUTH signature server to target platform T.

Figure 1.3 shows an updated architecture with a measurement component

MEAS. The dotted line from MEAS to E denotes a “measures” relationship. This

architecture allows MEAS to hash the binary of E and authenticate it with AUTH.

Until now we have ignored the other components that MEAS, AUTH, and E rely

on for successful execution. Often implicit in the functional correctness argument

of E is that it has a safe and su�ciently isolated context in which to run. However,

experience shows that adversaries attack layers below or adjacent to the compo-

nent of interest [43, 60]. Figure 1.4 shows a more realistic, layered architecture

for the target T where an arrow pointing from one component to another signi-
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fies a “contextual dependency” [60]. A rogue operating system or network driver

could undermine the security benefits of E. It becomes apparent here that trust

in MEAS and AUTH alone are insu�cient to achieve trust in E.

T

AUTH
Appraiser

Request

Evidence

E

Data

MEAS

Figure 1.3. Adding Measurer MEAS to target platform T.

T

Hardware

OS/VMM/MicroKernel

E
VM

OS

Network
Driver

AUTH

CPUStorage

App_1 App_2 App_n

World

…

Data

Appraiser
Request

Evidence MEAS

Figure 1.4. A more realistic target platform. Arrows indicate inter-
component dependencies.
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Another dimension of measurement in an attestation architecture is when mul-

tiple participants perform attestations on behalf of one another. Figure 1.5 shows

an example architecture with multiple protocol participants. In this scenario the

Relying Party engages in a delegated appraisal approach, where it specifies that

the Attester should send evidence to a separate Appraiser to acquire a certificate

that vouches for its trustworthiness. This topology is desirable when the attesta-

tion target does not trust the Relying Party with direct measurements that reveal

its configuration, but instead trusts a third-party appraiser. In Chapter 3 we

introduce a formal language that supports specifying multi-participant scenarios

such as this. Further, this Certificate Style attestation pattern is merely one of

a collection of such Flexible Mechanisms proposed by Helble et. al. [27], and in

Section 7.3 we instantiate each pattern in this benchmark by leveraging the formal

attestation components outlined later in this work.

P2

Appraiser

P1

Attester

P0

Relying
Party

3:certificate(n)

1:n

4:certificate(n)

2:evidence(n)

Figure 1.5. Certificate-Style. Fig. 5 on pg. 29:15 of [27].
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1.2 System-Level Security

Computing systems are built from a diverse collection of hardware and software

resources that interact in complex, layered ways. The security of one layer depends

on the security of layers below and adjacent to it. For example, a virus checker’s

recommendations are useless if it depends on a malicious OS kernel or an adjacent

component that can clean up after malicious actions to fool the virus scan. Even

when a system starts in a good state, some applications have a sliding window

of “secure dynamic states” and misbehave due to malicious inputs from a remote

actor. Layers below the target application, such as OS kernels and other core

system-level software, also remain vulnerable to static and dynamic corruption.

For all of these reasons, absolute system-level security–where every component

is impervious to attack–is an impractical goal on any useful system. Attackers will

attempt to exploit systems, and many will succeed. Our aspiration should thus

be to constrain such an adversary by detecting when attacks move the system

outside of a state we can trust. Rowe [59,60] demonstrates a formal argument for

instrumenting a system to force a more di�cult attack; placing a higher burden

on the adversary to corrupt a system and go undetected. This suggests a more

practical notion of system-level security where we isolate trusted components and

understand how their presence on a system confines the adversary. From this

perspective the primary utility of formally verified attestation components is their

isolation of risk on layered systems rather than guarantees of absolute security.

Deconstructing a system’s security into axioms about trusted components

moves the threat of system compromise to components that are much less likely

to fail. Security researchers understood early on that failure of complex systems

was inevitable [40] and advocated for development of core components that are
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most fundamental to system security. A number of such components have come

to maturity in recent years with the help of formal verification and mechanized

proof. An incomplete list of high-assurance tools relevant to system-level security

appear in Section 9.2. Components like these are not only critical for the develop-

ment of the sound attestation infrastructure proposed herein, but also as services

to be invoked and coordinated by the same infrastructure.

1.3 Overview of Contributions

In each of the attestation scenarios outlined in Section 1.1 above, the ap-

praiser does not have direct access to the target of measurement and must rely

on indirect evidence by trusted observers. Implicit in these target architectures

is a high-privilege thread of control responsible for invoking attestation services

and bundling results. This component is called an attestation manager, and is

responsible for carrying out a sequence of actions on the target platform as a

part of an attestation protocol [12]. An attestation manager must be aware of all

attestation capabilities on its platform and faithfully invoke them as specified by

the appraiser’s request. It must also bundle the evidence such that it is crypto-

graphically sound and amenable to checking by the appraiser. Correct execution

of the attestation manager is critical to any attestation infrastructure, and thus

critical to any trust an appraiser may gain in the target platform.

The aim of the current work is to design, implement, and prove correct a col-

lection of software components that provide a sound infrastructure for remote at-

testation of layered systems. Correct means that the components faithfully carry

out the goals of attestation, and prove means formal verification by machine-

checked proof. There are many modern success stories of formal verification (See

7



Section 9.2 for an overview), and it has become clear that its “trustworthiness...far

surpasses the confidence levels we rely on in engineering or mathematics for our

daily survival” [33]. There is ongoing work to incorporate formal methods as an

alternative to exhaustive testing and manual review in achieving high levels of

certification for critical components in avionics and other industries where fail-

ure of components is catastrophic [21, 26, 44, 61]. Despite its advantages, formal

verification remains a di�cult task requiring specialized expertise and tools. Be-

cause remote attestation is critical to system-level security of modern computing

environments with diverse topologies, it is worth this e↵ort to achieve the highest

levels of trust in core components that support it. The remainder of this intro-

duction provides an overview of each contribution, followed by tables with related

publications and links to code artifacts.

Copland Language and Reference Semantics

protocols; a shared vocabulary to communicate attestation goals. Copland [56]

is a domain-specific language and formal framework that supports specification

and analysis of layered attestation protocols. The design of Copland was joint

work with myself, my advisor, and our collaborators at MITRE, John’s Hopkins

APL, and the NSA. The Copland language consists of attestation terms called

phrases and evidence terms that describe the cryptographic structure of attesta-

tion results. Phrases intentionally leave primitive attestation services abstract,

but capture their precise ordering within a protocol and also the layered relation-

ships among protocol participants. Accompanying the language specification is a

collection of reference semantics: denotational semantics for measurement order-

ing and evidence shapes, and an operational semantics for event traces. We will

8



see later how the denotational semantics support higher-level analysis, while the

operational semantics aids in refinement to a more executable attestation seman-

tics. Chapter 2 provides an introduction to Copland by example. Chapter 3 gives

the full language definition and an overview of the reference semantics.

Execution Semantics: Attestation and Appraisal

While Copland provides a vocabulary for attestation goals and a foundation

for comparing protocol alternatives, its reference semantics leave many details

of attestation underspecified. The Copland Compiler and Copland Virtual Ma-

chine (CVM) cooperate to define a fine-grained notion of execution with explicit

invocation of services and bundling of raw evidence results. The compiler trans-

lates a Copland phrase into a sequence of commands to be executed in the CVM.

These commands manage interactions with remote and local-parallel attestation

domains. A dual generalized appraisal procedure unbundles the raw evidence

segments produced by arbitrary Copland-based executions within the CVM. All

components are implemented as functional programs in the Coq [66] proof assis-

tant, and are freely available on GitHub [50]. Full descriptions of the CVM and

generalized appraisal procedure appear in Sections 4.1 and 4.2, respectively.

Verification

The Copland Virtual Machine and its dual generalized appraisal procedure

provide a principled way to carry out Copland attestations and evaluate evidence

results. Both components invoke external services with precise parameters and

handle raw evidence bundles with intricate underlying cryptographic structure.

The subtle and fine-grained nature of these components and their interaction, com-

9



bined with their critical role in system-level security, warrants formal verification.

Because these components are defined within the Coq interactive theorem prover,

we can reason about them as first class entities. In Section 5.1 we prove correctness

of CVM execution, namely that it refines the Copland reference semantics with

respect to attestation event trace orderings and cryptographic evidence shape.

These proofs hold for arbitrary Copland phrases, and are aided by structural

lemmas for traces and domain-specific automation that targets commands in the

monadic Copland Compiler. Section 5.2 defines correctness of the appraisal pro-

cedure in terms of appraisal coverage, namely that all measurements are checked

for proper contents and cryptographic integrity according to the Copland-based

request term. This verification uncovered corner cases where certain evidence

shapes elude appraisal, thus leading to an alternative formulation of the coverage

theorem that restricts evidence shapes supported by the CVM.

Appraisal Soundness

Even with strong correctness properties like CVM event ordering and appraisal

coverage, it remains unclear what one can safely infer about a target system based

on a given appraisal result. The strength of such inferences is at the core of a

property we call appraisal soundness. Our motivation for discussing appraisal

soundness is not to arrive at a formal theorem that declares once-and-for-all that

attestation implies absolute security. Instead we aim for a more nuanced no-

tion that incorporates a broader view of attestation contexts. In Chapter 6 we

position appraisal soundness within a novel workflow called the Copland Verifica-

tion Architecture. This workflow leverages the formal attestation and appraisal

components, along with an accompanying security architecture, to discharge as-

10



sumptions within an existing higher-level model finder. This model finder analyzes

Copland attestations with respect to an active adversary attempting to subvert

attestation. To exercise this framework, in Section 6.4 we perform an iterative

design and analysis of a Copland attestation scenario for a UAV/Ground Station

demonstration platform for the DARPA C.A.S.E. program.

Instantiating Flexible Mechanisms

The Copland Virtual Machine takes an attestation protocol specified in Cop-

land along with initial evidence, and produces an evidence bundle that is input-

compatible with the generalized appraisal procedure. The Copland Verification

Architecture lifts the formal properties of these artifacts into a higher-level anal-

ysis framework to characterize an active adversary’s ability to thwart a given

attestation goal. While the UAV demonstration platform exercised these formal

components to gain confidence in a singular attestation design, it left unresolved

how an implementation might incorporate the formal components as executable

artifacts, together with non-formal components, to support a diverse collection of

attestation patterns. In Chapter 7 we introduce the Haskell Attestation Manager

prototype implementation and demonstrate how it supports a larger collection

of attestation shapes, namely the Flexible Mechanisms attestation scenarios pro-

posed in the work of Helble et. al. [27]. These attestation patterns serve as an

evolving benchmark that any attestation framework should aim to support.
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1.4 Publications and Code Artifacts

Publications

Artifact Publication

Copland language and semantics POST 2019 [56]

Copland Interpreter prototype HotSoS 2019 [51]

Copland Compiler + CVM Verification NFM 2021 [52]

Appraisal Soundness (DARPA UAV case study) MEMOCODE 2021 [53]

CVM (extended) + Appraisal Verification ISSE Journal (accepted, pending final review)

Code Artifacts

Artifact Link

Copland Reference Semantics https://ku-sldg.github.io/copland/resources/coplandcoq/index.html

CVM + Appraisal Verification https://github.com/ku-sldg/copland-avm

Haskell AM Prototype https://github.com/ku-sldg/haskell-am

CakeML AM Prototype https://github.com/ku-sldg/am-cakeml

DARPA UAV Models https://github.com/ampetz/memocode21_models

Copland JSON Schemas https://github.com/ku-sldg/json-am
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Chapter 2

Copland by Example:

Virus Checking as Attestation

A simple motivating example for Copland is treating virus checking as attes-

tation. Suppose that an appraiser would like to establish if a target system is

virus free. The obvious approach is for the appraiser to request virus checking re-

sults as an attestation of the remote machine and appraise the result to determine

the remote machine’s state. An initial specification of this attestation scenario in

Copland is:

@p (vc p t)

asking platform p to invoke its own virus checker vc as an attestation service

provider (ASP). The additional parameters to the ASP tell vc to target applica-

tions t also running at p.

Simply doing a remote procedure call places full trust in vc and its operational

environment. The target could lie about its results or an adversary could tamper

with the virus checking system by compromising the checker or its signature file.
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An adversary could also compromise the operational environment running the

checker or execute a man-in-the-middle replay attack.

A stronger attestation makes a request of the target that includes a nonce

to ensure measurement freshness. The target could acquire the nonce, gather

evidence from the checker, and bundle it with the nonce, signing both with its

private key. The appraiser would check the signature and nonce as well as the virus

checker results. While the virus checker attests system state, the signature and

nonce produce cryptographic meta-evidence describing how evidence is handled.

The Copland phrase for this attestation is:

⇤app, n : @p [ (vc p t)! SIG ]

adding an input nonce, n, and asking p to sign the measurement result. Here the

notation ⇤app, n : indicates that the appraiser place app is the top-level entity in

the protocol responsible for generating the nonce and appraising the final evidence.

Evidence from the virus checker may still be compromised if the virus checker

executable or signature file were compromised by an adversary. The attestation

protocol can be improved to return a measurement of the checker’s operational

environment in addition to virus checking results. The Copland phrase for this

stronger attestation is:

⇤app, n :

@p [ @ma [(attest p sys)! SIG] !

(vc p t)! SIG ]

where ma is a trusted and isolated measurement and attestation domain with read

access to p’s execution environment. We refer to such a domain that orchestrates

Copland primitives and bundles evidence results as an attestation manager. While
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abstract for now, the attest ASP’s role is as a composite measurement of sys, the

virus checking infrastructure–p’s operating system along with the virus checker

executable and signature file.

Measurement order is critical. An active adversary may compromise a com-

ponent, engage in malice, and cover its tracks while avoiding detection. Ordering

constrains the adversary by making this process more di�cult [60]. If the virus

checker is run before its executable or signature file are hashed the adversary

has much longer to compromise the checker than if they are hashed immediately

before invoking the checker. Ensuring measurement order is thus critical when

verifying attestation protocols and critical to any execution or transformation of

protocol representations.

The attestation becomes yet stronger by extending to include the signature file

server used to update application signatures. This server operates on a di↵erent

system that is remote to the system being appraised. However, its state impacts

the overall state of the virus checking infrastructure. The target system can

include information about the server by performing a layered attestation where

evidence describing the remote signature server is included in the target’s evidence.

Here the target p forwards an attestation request to the signature file server sf

that responds in the same manner as p:

⇤app, n :

@p[ @sf [(attest sf server)! SIG] !

@ma [(attest p sys)! SIG] !

(vc p t)! SIG ]

Although this new phrase is stronger, it adds assumptions about the trust-
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worthiness of the involved participants. Notice that the attestation mechanism at

the signature file domain sf must be trusted to perform an attestation of its own

server. This is in contrast to the cross-domain attestation performed by the ma

domain that observes sys on the target place p. This level of trust in sf may be

warranted if it is a known good entity, or if trust is established by other means

(boot-time measurements, prior dynamic attestations, etc.).

In addition to trustworthiness, this new phrase adds assumptions about the

capabilities and configurability of the participants. In particular, the top-level

appraiser place app must be preconfigured with golden values and cryptographic

materials necessary to evaluate the entire evidence package. While feasible, this

places a high burden on the appraiser to interpret evidence produced by the

signature file server, ma domain, and virus checker, collectively. It also risks

violating privacy concerns of the attesting parties that may wish to constrain

disclosure [12] of their system states.

As a final alternative to exercise these trade-o↵s, consider the following phrase:

⇤rp, n :

@p[ @ma [(attest p sys)! SIG] !

(vc p t)! SIG !

@app[(appraise app (p, sys, vc))! SIG] ]

Here the attestation of the signature file server is replaced by an explicit appraisal

ASP performed at the end of the protocol. Notice the top-level place has also

changed to rp (relying party); the client attempting to make a trust decision

about the target platform p. With this new phrase, rp can delegate evaluation

of the evidence to a specialist appraiser at place app. This appraiser also acts
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as a a trusted-third-party between mutually-distrustful targets and clients. As

we will see in Section 4.2, the formal semantics of Copland supports a general

strategy for implementing such an appraisal that leverages the precise structure

of the accumulated evidence bundle.

While the virus checking-as-attestation example is trivial on the surface, it

exposes critical characteristics of attestation protocols that motivate and impact

verification:

• Flexible mechanism—There is no single way for performing attestation or

appraisal. A language-based approach for specifying attestation protocols

is warranted [12].

• Order is important—Confidence in measurement ordering is critical to trust-

ing an appraisal result. Preserving measurement ordering from protocol

specification to execution is a critical correctness property [56, 59, 60].

• Trust is relative—Di↵erent attestations and appraisals result in di↵erent

levels of trust. Formally specifying the semantics of attestation and appraisal

is necessary for choosing the best protocol [12, 13].
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Chapter 3

Copland

Copland is a domain-specific language and formal semantics for specifying re-

mote attestation protocols. A Copland phrase is a term that specifies the order

and place where an attestation manager invokes primitive attestation services.

Copland is designed with expressivity and generality as foremost goals. As such

the language parameterizes attestation scenarios over work leaving specifics of

measurement, cryptographic functions, and communication capabilities to proto-

col negotiation and instantiation. While the definitive features and design goals

of Copland are documented separately [56], we proceed with an overview due to

the central role it plays in the attestation components presented herein.

3.1 Copland Phrases

The Copland phrase grammar appears in Figure 3.1. The non-terminal A

represents primitive attestation actions including measurements and evidence op-

erations. The constructor ASP defines an Attestation Service Provider atomic

measurement primitive with four static parameters (abbreviated by ā): m, s̄, p,
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and r that identify the measurement, an optional list of string parameters, the

place where the measurement runs, and the measurement target, respectively. A

place parameter identifies a distinct attestation environment, and supports cross-

domain measurements that chain trust across attestation boundaries. Since pa-

rameters to an ASP are static, they are populated during the negotiation phase

of a protocol, and it is up to the protocol participants to ensure they are properly

supported by the platforms involved. Note that the ASP constructor subsumes

the USM and KIM term functionality from the original Copland design [56].

t  A | @p t | (t! t) | (t
⇡
� t) | (t ⇡⇠ t)

A  ASP ā | CPY | SIG | HSH

Figure 3.1. Copland Phrase grammar where:
ā = (m, s̄, p, r); m = asp id 2 N; s̄ is a list of string arguments;
p = place id 2 N; r = target id 2 N; and ⇡ = (⇡1,⇡2) is a pair of
evidence splitting functions.

Remaining primitive terms specify cryptographic operations over evidence al-

ready collected in a protocol run. CPY, SIG, and HSH copy, sign and hash evidence.

Although seemingly benign, when combined with other cryptographic operations

and the data branching operators described later, CPY makes Copland strictly

more expressive. The cryptographic implementations underlying SIG and HSH,

along with the parameters of an ASP, are static and bound during protocol selec-

tion by a subset of the protocol participants. Such a negotiation should also ensure

proper configuration of the platforms involved. SIG, and HSH rely implicitly on

the current evidence as input and cryptographically transform that evidence.

The key to supporting attestation of layered architectures is the remote request

operator, @, that allows attestation managers to request attestations on behalf
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of each other. The subscript p specifies the place to send the attestation request

and the subterm t specifies the Copland phrase to send. As an example, the

phrase @1(@2(t)) specifies that the attestation manager at place 1 should send a

request to the attestation manager at place 2 to execute the phrase t. Nesting

of @ terms is arbitrary within a phrase allowing expressive layered specifications

parameterized over the attestation environment where they execute.

The three structural Copland terms specify the order of execution and the

routing of evidence among their subterms. The semantics of these operators are

diagrammed in Figures 3.2, 3.3, and 3.4 below. The phrase t1! t2 specifies that

t1 should finish executing strictly before t2 begins with evidence from t1 consumed

directly by t2. This “before” relation is captured by the dotted line and < symbol

between terms in the diagrams below. The phrase t1
⇡
� t2 specifies that t1

and t2 run in sequence with ⇡ specifying how input evidence is routed to the

subterms. Conversely, t1
⇡⇠ t2 places no restriction on the order of execution

for its subterms allowing parallel execution. Both branching operators (� and ⇠)

produce the product of executing their subterms.

t1e
e1 e2  t2
<

Figure 3.2. Diagram for the Copland phrase t1! t2.

t1

t2

e

es1

es2

e1

e1 ;; e2  

e2

<π

Figure 3.3. Diagram for the Copland phrase t1
⇡
� t2.
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t1

t2

e

es1

es2

e1

e2

e1 | | e2  π

Figure 3.4. Diagram for the Copland phrase t1
⇡⇠ t2.

3.2 Copland Evidence Types

The original Copland specification [56] introduces a structured datatype to rep-

resent results of executing Copland-based attestation protocols. While referred to

simply as evidence throughout that work, in what follows we distinguish it from

other evidence representations by calling it an Evidence Type. Figure 3.5 shows

the Evidence Type grammar, defined recursively over the non-terminal ET. This

is largely a restating of the evidence structure from Ramsdell et. al. [56] with

minor syntactic tweaks. Each constructor of ET represents a di↵erent class of

evidence collected by a Copland protocol and its parameters capture the context

where such measurements occurred.

ET  mt | NE n | ASPE ā p ET

| SIGE p ET | HSHE p ET

| SSE ET ET | PPE ET ET

Figure 3.5. Evidence Type grammar where:
ā and p are as in Fig. 3.1 and n = nonce id 2 N.

As an example, the ASPE constructor describes evidence collected by a prim-

itive ASP, and its parameters correspond to those of the originating ASP phrase

plus a tag indicating the measuring place. The recursive ET parameter indicates

a nested evidence structure holding results collected earlier in the protocol. The
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more deeply nested the evidence, the earlier it was collected during protocol ex-

ecution. However this remains merely a convention of evidence construction:

measurement ordering is enforced by the Copland execution semantics alone.

SIGE and HSHE represent digital signature and hash evidence, and each take a

parameter p to tag the place performing the operation and a recursive parameter

ET for the evidence type of the payload. NE represents nonce evidence, and is

unique among Evidence Types because it does not have a corresponding Copland

phrase originator–nonces are generated before Copland phrase execution begins

and embedded as initial evidence. Finally, SSE and PPE represent compound

evidence collected sequentially and in parallel, respectively.

3.3 Copland Reference Semantics

A critical property to consider when analyzing layered attestations is the order

in which system measurement events occur. A security decision derived from

attestation often hinges on a strong guarantee that one component was measured

before another, or measured before it measures other components. In addition

to measurement routines, an attestation infrastructure must manage components

that reliably bundle and route the resulting evidence. Prior work implementing

prototype attestation systems highlighted the tedious nature of these components

and their interaction [51]. In the rest of this section we will give an overview of a

collection of denotational and operational semantics for Copland executions that

characterize attestation event traces, their ordering, and cryptographic evidence

shapes. Together these formalisms provide a foundation for higher-level analysis

of attestation scenarios, while also acting as a reference semantics to constrain the

behavior of components that refine the behavior of Copland executions.
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3.3.1 Copland Evidence Semantics

A helpful way to view an Evidence Type is as an evidence shape: it captures

everything about measurement results and their structure, but omits concrete bi-

nary data values. Because this shape is independent of dynamic measurement

results, we can precompute an expected Evidence Type with the evidence denota-

tion function E(t, p, e) (originally defined in Ramsdell et. al. [56]) which takes as

input a Copland phrase t, shape of the initial evidence e, and the top-level place p.

The definition of E is repeated below in Figure 3.6 for the sake of self-containment.

Computing expected evidence shapes in this way is an important prerequisite for

the generalized appraisal procedure introduced later in Section 4.2.

E(CPY, p, e) = e

E((ASP ā), p, e) = ASPE ā p e

E(SIG, p, e) = SIGE p e

E(HSH, p, e) = HSHE p e

E(@q t, p, e) = E(t, q, e)
E(t1 ! t2, p, e) = E(t2, p, E(t1, p, e))
E(t1

⇡
� t2, p, e) = SSE e1 e2

E(t1
⇡⇠ t2, p, e) = PPE e1 e2

Figure 3.6. Copland Evidence Semantics.
In SSE and PPE cases, ⇡ = (⇡1,⇡2), e1 = E(t1, p,⇡1(e)), e2 = E(t2, p,⇡2(e))

3.3.2 Copland Events

The first step towards formal analysis of attestation systems is to define a

precise mathematical model of attestation-relevant system events. Events capture

actions taken by an attestation manager, and in Copland they appear both as

labels on steps in the LTS semantics of Section 3.3.3 and as leaf nodes in the
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Event System partial ordering of Section 3.3.4. They fall into four categories:

Measurement: Invocation of black-box ASP routines.

Cryptographic: Copy, sign, and hash operations over prior evidence.

Communication: Request/Reply sessions for interaction with remote domains.

Evidence routing: Local split and join operations that handle evidence routing

for the branching Copland phrases (
⇡
� and

⇡⇠).

The Copland event grammar appears in Figure 3.7. Of note is one minor dif-

ference compared to Copland’s original definition of events: we omit the output

Evidence Type parameter for primitive terms. This made verification more te-

dious without an obvious benefit to prove facts about evidence for this work.

V  ASPevent(N, p, ā,ET) | CPY(N, p)
| SIGevent(N, p,ET) | HSHevent(N, p,ET)
| REQ(N, p, p, t,ET) | RPY(N, p, p,ET)
| SPLIT(N, p) | JOIN(N, p)

Figure 3.7. Copland Events.

Events capture observable actions performed during attestation. Actions that

invoke IO may rely on external components, each with their own implementation

and independent evaluation criteria. Each event is labeled by a unique natural

number identifier. This label is vital during formal analysis to distinguish di↵erent

instances of an event over time, within execution of a single protocol. Each event

also has a place identifier to record the platform where the event occurred.

Bookkeeping of event and place identifiers is a verification artifact and ir-

relevant in a concrete implementation. Measurement and cryptographic events
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correspond exactly to primitive Copland terms, where the input evidence type is

captured as a parameter. Communication events REQ and RPY model a request

and reply interaction to a remote protocol participant. The two place parameters

capture the sender and recipient place (in that order). Evidence routing events

SPLIT and JOIN record local splitting and joining of evidence that arise from the

branching phrases (
⇡
� and

⇡⇠) that route evidence among their subterms.

3.3.3 Copland LTS Semantics

The Copland framework provides an abstract specification of Copland phrase

execution in the form of a small-step operational Labeled Transition System (LTS)

semantics. States of the LTS correspond to protocol execution states, and its

inference rules transform a Copland phrase from a protocol description to an

event trace. A single step is specified as s1
` s2 where s1 and s2 are states

and ` is a label that records attestation-relevant system events. The reflexive,

transitive closure, s1
c ⇤ s2, collects a trace c of all such observable attestation

steps. C(t, p, e) represents an initial configuration state with Copland phrase t,

starting place p, and initial evidence e. D(p, e0) represents the end of execution

at place p with final evidence e
0. Therefore, C(t, p, e)

c ⇤ D(p, e0) captures the

complete execution of Copland phrase t that exhibits event trace c.

To demonstrate how the LTS semantics generates event labels we describe two

representative sets of inference rules; one for the primitive term SIG and one for

the compound term t1 ! t2. The rule for SIG appears in Figure 3.8. Here the

single step relation moves from the initial state holding a SIG term directly to the

done state D. The evidence e is transformed into signed evidence SIGE p e, and

the label v holds a SIG event. The rules for t1! t2 in Figure 3.9 are only slightly
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more involved. The first rule says that an initial configuration state holding a

phrase t1! t2 can step to the linear sequence state LS with a silent label ⌧ . The

LS state holds two parameters, where the first is another configuration state and

the second is a Copland phrase. This is how the LS state focuses t1 for execu-

tion. The middle rule lifts internal steps to the LS level. Once the internal state

reaches the done state D, the final rule allows a silent step from the LS state to

a new configuration state C that e↵ectively focuses the t2 term for execution. All

Copland terms that appear in the LTS semantics are annotated with a range of

natural numbers to facilitate the unique identifiers of event labels. The SIG term

in Figure 3.8 is annotated with the trivial range (i, i + 1), as are all primitive

terms. The SIG event grabs i from the lower bound to build its unique label.

C([SIG]ii+1, p, e)
v D(p, SIGE p e) [v = SIGevent(i, p, e)]

Figure 3.8. LTS rule for SIG.

C([t1! t2]ij, p, e)
⌧ LS(C(t1, p, e), t2)

LS(s1, t2)
v LS(s2, t2) if s1

v s2

LS(D(p, e), t)
⌧ C(t, p, e)

Figure 3.9. LTS rules for !.

3.3.4 Copland Event Systems

In addition to the operational LTS semantics, the Copland specification defines

a strict partial order on attestation events called an Event System. Event Systems

are constructed inductively where: (i) Leaf nodes represent base cases and hold a
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single event instance; and (ii) Before nodes (t1Bt2) and Merge nodes (t1 ./ t2) are

defined inductively over terms. Before nodes impose ordering while Merge nodes

capture parallel event interleaving where orderings within each sub-term are main-

tained. The Event System denotation function, V , maps an annotated Copland

term (Copland phrases extended with a range of unique identifiers), place, and

initial evidence to a corresponding Event System. A representative subset of this

semantics [56] appears in Figure 3.10.

V([ASP ā]ii+1, p, e) = ASPevent(i, p, ā,ASPE ā p e)
V([SIG]ii+1, p, e) = SIGevent(i, p, SIGE p e)
V([@q t]ij, p, e) = REQ(i, p, q, t, e) B

V(t, q, e) B
RPY(j � 1, p, q, E(t, q, e))

V([t1
(⇡1,⇡2)⇠ t2]ij, p, e) = SPLIT(i, ...) B

(V(t1, p, ⇡1(e)) ./ V(t2, p, ⇡2(e))) B
JOIN(j � 1, ...)

Figure 3.10. Event System semantics (representative subset).

3.4 Copland Correctness Theorem

Taken together, Event Systems and the LTS are useful as reference semantics to

characterize attestation manager execution and denote evidence structure. While

Event Systems are denotational and well-suited for higher-level analysis, the LTS

provides an operational view of Copland attestations by enumerating the set of

allowable execution traces. The fundamental formal result of the original specifi-

cation [56] brings together these two main components of the reference semantics.

It says that any event v preceding an event v0 in the Event System generated by

the annotated Copland phrase t(i) (V(t(i), p, e) : v � v
0) also precedes v0 in traces
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exhibited by the LTS semantics. This fact is repeated here as Theorem 1, where

the notation v ⌧c v
0 means “v precedes v0 in event sequence c”:

Theorem 1 (LTS Respects Event System)

C(t(i), p, et)
c ⇤ D(p, et0)

^ V(t(i), p, et) : v � v
0 ) v ⌧c v

0
.

Figure 3.11 shows a concise graphical summary of this theorem, relating the

di↵erent semantic notions of Copland phrase execution. While this result is criti-

cal for linking the LTS and Event System semantics, the LTS remains an abstract

relational, non-executable artifact. A contribution of the current work is to refine

the LTS semantics to a more fine-grained notion of Copland execution that per-

forms explicit invocation of services and bundling of raw evidence. By linking this

refinement to the existing LTS specification, we can leverage Theorem 1 to ensure

that analysis over Event Systems is sound with respect to concrete executions.

Section 4.1 introduces the fine-grained semantics for Copland execution, and we

make its connection to Theorem 1 explicit in Section 5.1.

Phrases

denotational

ww

operational

''
Event Systems constrains // LTS Semantics

Figure 3.11. Semantic Relations. (Figure 1 from Section 1 in [56]).
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Chapter 4

Execution Semantics: Attestation

and Appraisal

While the LTS and Event System semantics give abstract characterizations of

Copland attestations, we now move to a more fine-grained notion of execution

with explicit invocation of services and bundling of evidence. The Copland Com-

piler translates a Copland phrase into a sequence of commands to be executed in

the Copland Virtual Machine (CVM), a monadic run-time that orchestrates attes-

tation primitives. A dual generalized appraisal procedure unbundles raw evidence

produced by the CVM and evaluates it for measurement content and crypto-

graphic integrity. Together these components provide a principled pipeline to ex-

ecute, bundle, and evaluate arbitrary Copland-based attestations. The compiler,

CVM, and appraisal procedure are implemented as monadic functional programs

in the Coq [66] proof assistant, and are freely available on GitHub [50].
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4.1 Copland Virtual Machine

The Copland Virtual Machine Monad is a state and exception monad defined

in Coq with the primitives bind, return, put, and get implemented in the canon-

ical way. While standard, the generic monadic type St and some accompanying

automation were adapted from the Verdi framework for formally verifying dis-

tributed systems [55,68]:

Definition St(S A : Type) : Type :=

S -> (option A) * S

The St computation takes a state parameter of type S as input, and returns a pair

of an optional return value of type A and an updated state.

The CVM Monad is a specialization of St with a CVM st structure as the state

type S. CVM st is a record datatype with fields that hold configuration data for

the CVM as it executes. These fields are st ev, st trace, st pl, and st evid that

maintain an evidence bundle, a trace of attestation-relevant IO events, currently-

executing place, and IO event ID counter, respectively. The CVM also comes with

standard functions for executing its stateful computations (runState, evalState,

execState), the always-failing computation (failm), and getters/putters specialized

to the CVM internal fields.

4.1.1 Raw and Type-Tagged Evidence

Whereas an Evidence Type (Figure 3.5) describes the cryptographic shape of

evidence, execution of the CVM requires a raw evidence representation to hold the

actual binary data values gleaned from dynamic measurements and cryptographic

operations over that data. In Coq we assign primitive binary data values the type
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BS (short for “Binary String”) which we leave uninterpreted. Larger raw evidence

sequences accumulated during attestation then become lists of BS values:

Definition BS : Set. Admitted.

Definition RawEv := list BS.

Lists are a convenient abstraction for binary data sequences, and have su�cient

built-in theories in Coq to prove meaningful facts about attestation and appraisal.

While an implementation of attestation need only operate over raw measure-

ment values, it is crucial during verification of the CVM to maintain the precise

structure of the underlying evidence as it is constructed and shared among pro-

tocol participants. Mistakes in how evidence is bundled could lead to a lack

of cryptographic strength or disclosure of measurement results that violate pri-

vacy expectations. With that in mind, we introduce the “Type-tagged Evidence”

datatype EvC which will serve as the type of the st ev field of CVM st:

Inductive EvC: Set :=

| evc: RawEv -> EvidenceT -> EvC.

This representation pairs the “list of bits” raw evidence together with its Evidence

Type, EvidenceT. This supports a verification strategy where each operation ma-

nipulating raw evidence is accompanied by a principled update to its evidence

structure.

4.1.2 Measurement and Cryptographic Primitives

Measurement primitives build computations in the CVM Monad that perform

two primary functions: simulate invocation of measurement services and explic-
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itly bundle the evidence results. Each primitive follows a general pattern: grab

necessary inputs from the current monadic state, simulate external IO by tagging

an event with all relevant parameters, and finally returning an updated evidence

bundle that is placed back into the CVM state for further processing.

Collection of raw evidence values is necessarily simulated because we cannot

literally invoke IO within the Coq verification environment. However, because the

datatype BS is opaque we can capture and reason about parameters to “raw-bits-

returning” functions in the formal environment, but leave their implementations

(custom measurement routines, cryptographic algorithms) configurable by plat-

form owners. This approach provides a natural path from verification to synthe-

sized code that can fill in the IO stubs.

Definition tag_ASP
(params :ASP_PARAMS) (mpl:Plc) : CVM BS :=

x <- next_event_id ;;
let bs := (do_asp params mpl x) in

add_tracem [asp_Event x mpl params] ;;
ret bs.

Definition invoke_ASP
(params:ASP_PARAMS) : CVM EvC :=

e <- get_ev ;;
p <- get_pl ;;
bs <- tag_ASP params p ;;
ret (cons_uu bs e params p).

Figure 4.1. Example monadic measurement primitive.

For a representative example of such a primitive, invoke ASP and its helper

function tag ASP appear in Figure 4.1. In invoke ASP, after grabbing the current

evidence and place from the CVM state, tag ASP simulates an IO measurement
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and cons uu bundles the raw evidence result. In tag ASP the event identifier x is

generated by next event id, a simple counter maintained by the CVM during veri-

fication. Because next event id is monotonic, x is guaranteed unique per-protocol.

This accounts for multiple, independent invocations of the same ASP and captures

changes in a target’s state over time. Notice that x serves the dual role of tagging

the ASP event in the CVM trace (via add tracem) and as an abstract representa-

tion of a binary measurement result as a parameter to the uninterpreted IO stub

do asp.

The cons uu helper function in Figure 4.2 performs evidence bundling within

the type-tagged evidence structure. For the raw evidence portion, it simply acts as

a cons operation onto the existing BS list. The rest of cons uu extends the existing

Evidence Type to tag it with the ASP parameters invoked and the measuring place

from which the ASP was launched. uu is the Coq constructor corresponding to

the ASPE Evidence Type.

Additional monadic primitives exist for cryptographic operations like signing

and hashing, but we elide their definitions because they are structurally identical

to invoke ASP. The main di↵erence is in their “evidence bundlers” cons gg and

cons hh, which appear at the end of Figure 4.2. These account for the subtle

di↵erences in semantics for signing and hashing, respectively. Of note is how

cons hh overwrites its existing raw evidence with the single new hash value.

This new hash of type BS is computed as follows: do hash (encodeEvBits e) p,

where p and e represent the hashing place and current raw evidence in the CVM.

do hash and encodeEvBits are left uninterpreted to keep the hashing algorithm

and binary evidence representation abstract. In contrast to cons hh, cons gg re-

tains its input raw evidence payload along with the signature over that payload;
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aligning with common practice for digital signatures. Nonetheless, both cons hh

and cons gg update the Evidence Type to extend the cryptographic structure of

the underlying payload.

Definition cons_uu
(x:BS) (e:EvC) (params:ASP_PARAMS)
(mpl:Plc) : EvC :=

match e with
| evc bits et =>

evc (x :: bits) (uu params mpl et)
end.

Definition cons_gg
(sig:BS) (e:EvC) (p:Plc): EvC :=

match e with
| evc bits et =>

evc (sig :: bits) (gg p et)
end.

Definition cons_hh
(hsh:BS) (e:EvC) (p:Plc): EvC :=

match e with
| evc _ et =>

evc [hsh] (hh p et)
end.

Figure 4.2. Evidence bundlers: cons uu, cons gg, cons hh.

4.1.3 Remote and Parallel CVM Execution

When interpreting a remote request term @pt or a parallel branch t1
⇡⇠ t2

CVM execution relies on interaction with an external attestation manager that

is also running an instance of the CVM. tag REQ in Figure 4.3 captures an IO

request and its parameters: t (Copland phrase requested), p (requesting place),
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q (destination place), and e (the initial evidence forwarded to q). Capturing the

Evidence Type at each request is essential to denote precisely which segments of

the underlying raw evidence are shared, and with whom, during protocol execu-

tion. This in turn supports higher-level analyses that involve privacy expectations

of protocol participants.

Definition tag_REQ (t:Term) (p:Plc) (q:Plc)
(e:EvC) : CVM unit :=

reqi <- next_event_id ;;
add_tracem [req reqi p q t (get_et e)].

Figure 4.3. Tagging a request Event.

Whereas tag REQ models a request to a remote CVM, remote session (Fig-

ure 4.4) models the events and evidence generated by a CVM carrying out the

request at a remote end-point. cvm events t q et is an uninterpreted function

used only during verification to simulate the trace of attestation events emit-

ted by executing Copland phrase t at place q with initial evidence of type et.

doRemote session is also uninterpreted, but is an implementation-relevant config-

urable IO stub, akin to do asp. Its intended semantics is an IO-blocking communi-

cation procedure that facilitates a request/response session with a remote CVM,

returning the evidence received in the response. Finally, doRemote (Figure 4.4)

is the top-level monadic function combining these communication primitives in

sequence. Upon receipt of evidence from the remote CVM it tags the reply event

and returns the evidence.

Parallel execution of Copland phrases is modeled by an asynchronous interac-

tion with “local parallel” CVM instances. Figure 4.5 shows the two monadic prim-
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Definition doRemote
(t:Term) (q:Plc) (e:EvC) : CVM EvC :=

p <- get_pl ;;
tag_REQ t p q e ;;
e’ <- remote_session t q e ;;
tag_RPY p q e’ ;;
ret e’.

Definition remote_session
(t:Term) (q:Plc) (e:EvC) : CVM EvC :=

add_tracem (cvm_events t q (get_et e)) ;;
ret (doRemote_session t q e).

Figure 4.4. Monadic communication session.

itives, start par thread and wait par thread, that facilitate this interaction. Each

takes as input a thread location of type Loc that acts as an abstract handle to

outstanding CVM threads of execution. During compilation (See Section 4.1.4)

the Loc parameters are derived from annotations on parallel Copland phrases to

be unique per start/wait pair for a given phrase.

start par thread invokes the uninterpreted IO function do start par thread loc t e

to launch a parallel CVM thread identified by location loc, asking it to exe-

cute Copland phrase t with initial raw evidence e. It also adds a corresponding

cvm thread start event to tag the launch with its relevant parameters. cvm thread start

and cvm thread end are events unique to traces emitted by the CVM; they do not

appear in the LTS reference semantics. They serve to bookend other events, al-

lowing the main CVM thread to continue emitting events while its parallel threads

complete. do wait par thread loc t p e simulates poll-waiting for an evidence result

at thread location loc, and as soon as evidence “arrives” at loc, the CVM emits a

cvm thread end loc event and returns the evidence.
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Definition start_par_thread (loc:Loc)
(t:AnnoTerm) (e:EvC) : CVM unit :=

p <- get_pl ;;
do_start_par_thread loc t (get_bits e) ;;
add_tracem

[cvm_thread_start loc p t (get_et e)].

Definition wait_par_thread (loc:Loc)
(t:AnnoTerm) (e:EvC) : CVM EvC :=

p <- get_pl ;;
e’ <- do_wait_par_thread loc t p e ;;
add_tracem [cvm_thread_end loc] ;;
ret e’.

Figure 4.5. Parallel execution monadic primitives.

Because remote and parallel instances of the CVM are external to the main

thread of execution, during verification we must make assumptions about the evi-

dence they collect. Towards this, we define an uninterpreted function to represent

a “golden evidence semantics” for CVM execution. Because the core CVM seman-

tics should be identical for valid remote and local parallel instances, we provide

rewrite rules as Axioms to equate their respective IO stub specializations. This

supports sharing of proof machinery for assumptions involving external CVM in-

stances while still maintaining the distinction between remote and local parallel IO

stubs. This approach enables a smoother translation to concrete implementations

where di↵erences in their glue code may be significant.

4.1.4 Copland Compiler

Each case of the Copland Compiler in Figure 4.6 pattern matches on the syn-

tax of an annotated Copland phrase, then uses the monadic sequence operation

;; to build a corresponding series of commands in the CVM Monad. The indi-
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vidual commands are not executed by the compiler directly, but returned as a

computation to be executed later. This approach is inspired by work that uses

a monadic shallow embedding in HOL to synthesize stateful CakeML code [28].

The shallow embedding style [22] allows the protocol writer to leverage the se-

quential, imperative nature of monadic notation while also having access to a

rigorous formal environment to analyze chunks of code written in the monad. It

also leverages Coq’s built-in name binding metatheory, avoiding this notoriously

di�cult problem in formal verification of deeply embedded languages [2].

The first three compiler cases are trivial. The ASP term case invokes the

do prim function that dispatches commands specific to each primitive Copland

operation (i.e. invoke ASP from Section 4.1.2). The @ term case invokes doRemote,

bookended by evidence management. Finally, the linear sequence term (t1 ! t2)

case invokes copland compile recursively on the subterms t1 and t2 and appends

the results in sequence. Note that because evidence is cumulative in the CVM,

this means that evidence computed by executing the t1 commands will serve as

input to the t2 commands.

The branch sequence case (t1
(sp1,sp2)
� t2) filters the initial evidence into evidence

for the two subterms using the split ev helper. The commands for the t1 and t2

subterms are then compiled in sequence, placing initial evidence for the respective

subterm in the CVM st before executing each, and extracting evidence results

after. join seq combines result evidence and emits a join event.

The branch parallel case (t1
(sp1,sp2)⇠ t2) begins like the branch sequence case, us-

ing split ev to split the initial evidence. But now we instead invoke the start par thread

monadic helper function to launch execution of the t2 sub-commands in a parallel

CVM instance thread. We then proceed to compile the t1 subterm as usual in
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the main CVM thread and extract its evidence result from the CVM st. This case

concludes by invoking wait par thread to poll-wait for the evidence result from the

t2 thread, then packaging evidence results and emitting a join event via join par.

We note here that our decision to leave the thread model abstract in the CVM

semantics allows for attestation managers to run in diverse environments that may

or may not provide native support for concurrency.

Monadic values represent computations waiting to run. run cvm t st (end of

Figure 4.6) interprets the monadic computation (copland compile t) with initial

state st, producing an updated state. This updated state contains the collected

evidence and event trace corresponding to execution of the input term and initial

evidence in st. The evidence and event trace are su�cient to verify correctness of

run cvm with respect to the LTS semantics.

4.2 Appraisal

Appraisal is the final step in a remote attestation protocol where an indirect

observer of a target platform must analyze evidence in order to determine the tar-

get’s trustworthiness. Regardless of its level of scrutiny, an appraiser must have

a precise understanding of the structure of evidence it examines. The Copland

framework provides such a shared evidence structure, and Copland phrases ex-

ecuted by the CVM produce evidence with a predictable shape. In this section

we introduce a generalized strategy for appraisal of raw evidence that leverages

Copland’s evidence semantics along with an environment for accessing golden

measurement values and cryptographic materials.
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Fixpoint copland_compile
(t:AnnoTermPar): CVM unit :=

match t with
| aasp_par a =>

e <- do_prim a ;;
put_ev e

| aatt_par q t’ =>
e <- get_ev ;;
e’ <- doRemote t’ q e ;;
put_ev e’

| alseq_par t1 t2 =>
copland_compile t1 ;;
copland_compile t2

| abseq_par sp t1 t2 =>
(e1,e2) <- split_ev sp ;;
put_ev e1 ;;
copland_compile t1 ;;
e1r <- get_ev ;;
put_ev e2 ;;
copland_compile t2 ;;
e2r <- get_ev ;;
join_seq e1r e2r

| abpar_par loc sp t1 t2 =>
(e1,e2) <- split_ev sp ;;
start_par_thread loc t2 e2 ;;
put_ev e1 ;;
copland_compile t1 ;;
e1r <- get_ev ;;
e2r <- wait_par_thread loc t2 e2 ;;
join_par e1r e2r

end.

Definition run_cvm
(t:AnnoTermPar) st : cvm_st :=

execSt (copland_compile t) st.

Figure 4.6. The Copland Compiler–builds computations as se-
quenced CVM commands.
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4.2.1 Typed Concrete Evidence

While the type-tagged evidence representation introduced earlier provides a

clean separation between raw evidence and its structure during CVM execution,

for appraisal it is convenient to merge the two into a single Typed Concrete Evi-

dence type shown in Figure 4.7. ETc is similar in structure to the Evidence Type

grammar of Copland (ET), but with raw binary evidence values bs inserted inline.

One exception is the hash evidence constructor HSHc whose recursive parameter is

an Evidence Type ET rather than concrete evidence: the one-way hash operation

“forgets” the input raw evidence but still maintains its underlying structure for

use during appraisal.

ETc  mtc | ASPc ā p bs ETc | SIGc p bs ETc

| HSHc p bs ET | Nc n bs | SSE ETc ETc

| PPE ETc ETc

Figure 4.7. Typed Concrete Evidence grammar where:
ā, p, and n are as in Fig. 3.5 and bs 2 BS (binary values).

The ETc evidence representation is convenient for both appraisal verification

and execution. During verification it allows a more natural “evidence subterm”

relation, and during execution it is useful as an “all-in-one” structure for remote

parties to communicate attestation and appraisal results, along with custom cer-

tificates over evidence. Nonetheless, the raw evidence sequence alone is vital as

an intermediate form for attestation scenarios with mutual distrust where an in-

termediary must not know the semantic structure of the evidence it handles.
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4.2.2 Generalized Appraisal Procedure

The CVM takes an arbitrary Copland phrase as input and generates an evi-

dence bundle with predictable shape. We now aim to define a dual mechanism to

perform appraisal by deconstructing an evidence bundle to check both its crypto-

graphic integrity and measurement payloads against expected values. For now we

assume the entity performing appraisal is the same that initiated the attestation.

Representative cases of the generalized appraisal procedure appraise appear

in Figure 4.8. appraise takes as inputs an Evidence Type et and raw evidence

sequence ls, and returns an optional EvidenceC (The Coq encoding of ETc). The

sequence of raw values have no meaning in isolation, but gain meaningful structure

when paired with a corresponding Evidence Type. In general each case of this

function will begin with an attempt to peel o↵ one or more binary values from

the front of the raw evidence list. If successful, the values are passed to primitive

appraisal checker functions.

The nonce and hash case (nn and hh constructors) only require the frontmost

binary value to complete appraisal, while other cases require one or more recursive

calls to appraise. The sequential and parallel cases (ss and pp) make recursive calls

to disjoint partitions of the raw evidence list, where the partitions are computed

based on the size of the left-most Evidence Type subterm. Computing partitions

in this way ensures that, assuming appraise succeeds, it operates over the correct

raw evidence of su�cient length.

4.2.3 Primitive Appraisal Checkers

The generalized appraisal procedure appraise in Figure 4.8 relies on primi-

tive appraisal checker functions checkASP, checkSig, checkHash, and checkNonce.
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Fixpoint appraise (et:EvidenceT) (ls:RawEv) :
option EvidenceC :=

match et with
| nn nid =>

(n, _) <- peel_bs ls ;;
res <- checkNonce nid n ;;
Some (nnc nid res)

| uu args et’ =>
(bs, ls’) <- peel_bs ls ;;
res <- (checkASP args bs) ;;
x <- appraise et’ ls’ ;;
Some (uuc args res x)

| gg p et’ =>
(sig, ls’) <- peel_bs ls ;;
res <- checkSig ls’ p sig ;;
x <- appraise et’ ls’ ;;
Some (ggc p res x)

| hh p et =>
(bs, _) <- peel_bs ls ;;
res <- checkHash et p bs ;;
Some (hhc p res et)

| ss et1 et2 =>
x <- appraise et1 (firstn (et_size et1) ls) ;;
y <- appraise et2 (skipn (et_size et1) ls) ;;
Some (ssc x y)

...

end.

Figure 4.8. Generalized appraisal procedure.
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They are “primitive” in the sense that their implementations are external and

appraiser-configurable. Similar to the IO stubs for primitives of CVM execution,

we implement appraisal checkers in Coq as mostly-uninterpreted functions; cap-

turing precise parameters (“what” is appraised) while leaving the details of these

checks abstract.

An implementation of checkASP relies on an appraiser-supplied checker func-

tion that can interpret the semantic content of the primitive ASP evidence blob.

ASP appraisals range in sophistication from simple equality checks derived from

a database of golden values, to more custom or qualitative analyses based on a

given scenario. The checkSig primitive relies on mapping its place parameter p

to the public key counterpart of the private key used to sign the evidence dur-

ing attestation. Assuming the identity of the signer is linked to p, checking the

signature blob ensures integrity of the raw evidence and binds it to p.

checkHash di↵ers from checkSig in that it relies on the Evidence Type of the

underlying hash blob. This is because the hash operation in the CVM reduces

the already-accumulated evidence to a single value, as opposed to a signature

that retains the raw evidence it signs. checkHash must reconstruct an expected

hash value based on the Evidence Type and place parameter alone, then compare

it to the actual hash value computed during attestation. Formalization of this

procedure uncovered that reconstructing such a hash is problematic for certain

evidence types that involve a signature embedded within a hash, and we discuss

a remedy to this in Section 5.2.

Finally, checkNonce looks up a golden nonce value by ID and performs an

equality check against the value in the returned evidence bundle. By design all

nonce evidence is generated before a Copland attestation begins, and is embedded
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as initial evidence. At generation time, each nonce is assigned a unique identifier,

and a mapping from nonce ID to value is stored in an appraisal context outlined

in the next section.

4.2.4 Appraisal in the AM Monad

While the CVM Monad supports faithful execution of an individual Copland

phrase, many actions before and after execution are more naturally expressed at a

layer above Copland. Actions preceding execution prepare initial evidence, collect

evidence results from earlier runs, and generate fresh nonces. Actions following

CVM execution include appraisal and preparing additional Copland phrases for

execution. These pre- and post- actions are encoded as statements in the Attes-

tation Manager (AM) Monad.

Rather than performing measurements directly, the AM Monad environment

relies on run cvm as a well defined interface to the CVM. This abstracts away

details of Copland phrase execution and allows the consumer of an attestation

to compose facts about the CVM, like those verified in Section 5.1 about events

and evidence shapes, in support of higher level trust decisions. The function

do appraise in Figure 4.9 is an AM Monad computation that performs an end-to-

end attestation and appraisal. Here am appraise is a wrapper around appraise with

access cryptographic materials and golden values required by primitive appraisal

checkers. Finally, trust decision is an abstract operation that takes some action

based on the appraised evidence bundle.
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Definition do_appraise (t:AnnoTerm) (p:Plc) : AM () :=
(n, nid) <- gen_nonce ;
bits’ <- run_cvm t p n ;
res <- am_appraise (aeval t p (nn nid)) bits’ ;
trust_decision res

Figure 4.9. Appraisal in the AM Monad.
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Chapter 5

Verification

In Section 3.3 we defined the Copland Reference Semantics, a collection of

abstract denotations that specify key behaviors of Copland attestations amenable

to higher-level analysis. Later in Chapter 4 we presented a refinement of Copland

executions called the Copland Virtual Machine and its accompanying generalized

appraisal procedure that perform intricate orchestration, bundling, and evalua-

tion of Copland primitives and their evidence results. However up until now there

are no formal connections linking either the Reference Semantics to CVM execu-

tion, or CVM execution to appraisal. Because these artifacts are implemented as

functional programs in the Coq proof assistant, we now make these connections

explicit through formal specification and proof.

5.1 CVM Verification

Correctness of the Copland Virtual Machine amounts to proving that running

compiled Copland terms results in evidence and event sequences that respect the

Copland reference semantics. Earlier work [56] proves that any event v preceding
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an event v
0 in an Event System generated by the annotated Copland phrase t(i)

(V(t(i), p, e) :v � v
0) also precedes v0 in the trace c exhibited by the LTS semantics

 ⇤ . This fact is repeated here as Theorem 2, where the notation v ⌧c v
0 means

“v precedes v
0 in event sequence c”. The notation t(i) means Copland phrase t

annotated with event ids starting at index i.

Theorem 2 (LTS Respects Event System)

C(t(i), p, et)
c ⇤ D(p, et0)

^ V(t(i), p, et) : v � v
0 ) v ⌧c v

0
.

To verify the event semantics of the CVM we replace the LTS evaluation

relation with CVM execution and show that it respects the same Event System.

Theorem 3 defines this goal:

Theorem 3 (CVM Respects Event System)

run cvm (copland compile t)

{ st ev := ( , et), st pl := p, st trace := [ ], st evid := i }

+

{ st ev := ( , ), st pl := p, st trace := c, st evid := }

^ V(t(i), p, et) : v � v
0 ) v ⌧c v

0
.

The + notation emphasizes that run cvm is literally a functional program written

in Coq. This di↵erentiates it from the relational small-step LTS semantics
c ⇤ .

run cvm takes as inputs a sequence of commands in the CVMMonad and a CVM st

structure that includes fields for initial evidence (st ev), starting place (st pl), ini-

tial event trace (st trace), and a starting value for the event ID counter (st evid).

It outputs the CVM st that results from interpreting the compiled phrase as de-
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scribed in Section 4.1.4. Underscores represent universally-quantified variables in

a Theorem whose specific values are irrelevant.

The first assumption of Theorem 3 states that running the CVM on a list of

commands compiled from the Copland phrase t produces a trace c of events. The

remainder is identical to the conclusion of Theorem 2. Note that the event index

i serves as the link between the CVM and LTS event semantics: In run cvm as

the initial IO event ID incremented at each invocation of an attestation-relevant

event; in V to annotate the phrase t, which in turn denotes the Event System

reference semantics for events.

5.1.1 Lemmas

To prove Theorem 3, it is enough to prove intermediate Lemma 4 that relates

event traces in the CVM semantics to those in the LTS semantics. Lemma 4 states

that any trace c produced by the CVM semantics is also exhibited by the LTS

semantics. We can combine Lemma 4 transitively with Theorem 2 to prove the

main correctness result, Theorem 3. Notice the initial evidence type et is relevant

in all of these properties: the structure of evidence determines parameters of

events emitted by the CVM and LTS executions alike.

Lemma 4 (CVM Refines LTS Events)

run cvm (copland compile t)

{ st ev := ( , et), st pl := p, st trace := [ ], st evid := i }

+

{ st ev := ( , ), st pl := p, st trace := c, st evid := }

) C(t(i), p, et)
c ⇤ D(p, E(t, p, et)).
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Lemma 4 rules out any “extra” CVM event traces not captured by the LTS

semantics. It is worth pointing out that we could extend the CVM semantics with

additional system events and still prove Theorem 3 directly. This is because The-

orem 3 only mentions the ordering of attestation-relevant system events captured

by Event Systems derived from V . However, indirection through the LTS seman-

tics is a convenient refinement because of its closer compatibility with fine-grained

CVM execution. The proof of Lemma 4 proceeds by induction on the Copland

phrase t that is to be compiled and run through the CVM. Each case corresponds

to a constructor of the phrase grammar and begins by conservative simplification

and unfolding of run cvm. Each case ends with applying a semantic rule of the

LTS semantics.

A second core property of the CVM is that it transforms Copland Evidence

consistently with the LTS semantics, stated as Lemma 5. Recall that E is a deno-

tation function indicating the reference semantics for Copland evidence. Similar

in structure to the proof of Lemma 4, the proof of this Lemma proceeds by induc-

tion on the input Copland phrase t. We will see later how this property is critical

for an appraiser that must rely on precise cryptographic bundling and the shape

of evidence produced by a valid CVM.

Lemma 5 (CVM Preserves Evidence Type)

If run cvm (copland compile t)

{ st ev := ( , et), st pl := p, st trace := [ ] } +

{ st ev := ( , et0), st pl := p, st trace := c } then

et0 = E(t, p, et).
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Because we cannot perform IO explicitly within Coq, we use st trace CVM

field to accumulate a trace of calls to components external to the CVM. This

trace records every IO invocation occurring during execution and their relative

ordering. Lemma 6 says that st trace is irrelevant to the remaining fields that

handle evidence explicitly during CVM execution. This verifies that erasing the

st trace field from CVM st is safe after analysis.

Lemma 6 (st trace irrel)

If run cvm (copland compile t)

{ st ev := e, st pl := p, st trace := tr1 } +

{ st ev := e0, st pl := p0, st trace := } and

run cvm (copland compile t)

{ st ev := e, st pl := p, st trace := tr2 } +

{ st ev := e00, st pl := p00, st trace := } then

e0 = e00 and p0 = p00.

Another key property upheld by the CVM is that event traces are cumulative. This

means that existing event traces in st trace remain unmodified as CVM execution

proceeds. Lemma 7 encodes this vital “distributive property” over trace su�xes

that is used in several other Lemmas to simplify trace decomposition.
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Lemma 7 (st trace cumul)

If run cvm (copland compile t)

{ st ev := e, st pl := p, st trace := m ++ k } + st
0
and

run cvm (copland compile t)

{ st ev := e, st pl := p, st trace := k } + st
00
then

(st trace st
0) = m ++ (st trace st

00).

5.1.2 Automation

There are many built-in ways to simplify and expand expressions in Coq.

Unfortunately, most expand terms too far or not enough. To reach a middle-

ground we define custom automation in Ltac, Coq’s proof tactic language. First

we define a custom “unfolder” that carefully expands primitive monadic operations

like bind and return, along with CVM-specific helpers like invoke ASP.

Next we define a larger simplifier that repeatedly invokes the targeted unfolder

followed by cbn and other conservative simplifications. This custom simplification

is the first step in most proofs and is repeated throughout as helper Lemmas

transform the proof state to expose more reducible expressions. We also leveraged

the StructTact [69] library, a collection of general-purpose automation primitives

for common Coq structures like match and if statements, originally developed for

use in the Verdi [55, 68] framework. Combined with our custom automation this

makes the proofs robust against small changes to the CVM implementation and

greatly simplifies proof maintenance after more significant refactoring.
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5.2 Appraisal Correctness

Given the generalized appraisal procedure from Section 4.2.2, we now define

and justify its correctness. Formal treatment is warranted because errors in the

unpacking of evidence bundles can lead to misplaced trust in the system being

appraised. We decompose appraisal correctness into two main properties: ap-

praisal coverage and appraisal soundness. Coverage ensures precise segments of

the raw binary evidence have the expected cryptographic integrity and checks

against golden measurements, while soundness characterizes the strength of an

appraisal result with respect to the target system being appraised.

5.2.1 ASP Coverage

ASP Coverage says that primitive checks performed during appraisal combine

to exhaustively cover each ASP measurement in the original attestation request.

The inference rule in Figure 5.1 defines a relation between appraisal evidence

results (values of type ETc) and Copland Events called covers meas. The intu-

ition behind “e covers meas ev” is: appraised evidence e incorporates a primi-

tive check of the evidence produced by measurement event ev during attestation.

There are two ways to satisfy this relation, indicated as the expanded definitions

asp covers meas and hash covers asp.

In these definitions, 2T and 2C are sub-term relations for the ET and ETc

evidence representations, respectively. asp covers meas thus ensures that a prim-

itive ASP check occurs as direct sub-evidence of the appraisal result e. Notice

that the parameter i embedded within the call to do asp matches the ASP event

ID in the conclusion of covers meas. This confirms the connection between the
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asp covers meas :=
(ASPc ā p (checkASP ā (do asp ā p i)) ) 2C e

hash covers asp :=
(ASPE ā p ) 2T eT ^ (HSHc q (checkHash eT q bs) eT) 2C e

asp covers meas _ hash covers asp
e covers meas (ASPevent(i, p, ā, ))

covers meas

Figure 5.1. covers meas inference rule.

unique measurement event instance during CVM execution and the raw binary

result passed to appraisal.

hash covers asp also covers an ASP event, but indirectly through a call to

checkHash. Recall that in the CVM the hash primitive consumes any raw ASP

evidence collected up to that point and compacts it into a single fixed-length hash

value. Although in an implementation a hash is cryptographically one-way, during

verification we track the type of evidence being hashed. This allows us to state in

hash covers asp that a specific ASP measurement with Evidence Type ASPE ā p

appears as a sub-evidence of the raw hash passed to checkHash.

We can now state the appraisal coverage property for ASPs in Lemma 8. This

Lemma states that for each ASP measurement event derived from an arbitrary

Copland phrase t, proper checks appear in the appraisal result. Notice that we

compute and pass the expected Evidence Type to appraise, along with the raw

evidence computed by compiling and running t through the CVM.

One of the well-formedness assumptions is the predicate not none none over

Copland phrases. This predicate serves to disallow sub-phrases of the form:

t1
(�,�)
� t2 and t1

(�,�)⇠ t2. The e↵ect of such a phrase is to erase all evidence

accumulated up to that point by forwarding empty evidence to both of the t1 and

t2 branch subterms. If permitted, these “evidence-erasing” subterms would pre-
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vent CVM executions from being “evidence-cumulative-modulo-hashing”. With-

out this property, appraisal coverage as stated above does not hold: a measurement

event could produce evidence during attestation that is erased before appraisal.

Lemma 8 (appraisal asp coverage)

8 t p et bits bits0,

< well formedness assumptions >,

If run cvm (copland compile t)

{ st ev := (evc bits et), st pl := p, st trace := } +

{ st ev := (evc bits0 ), st pl := , st trace := }

then

8 ev = ASPevent(i, p0, ā, ) 2 V(t, p, et),

appraise (aeval t p et) bits0 covers meas ev

5.2.2 Signature Appraisal Coverage

Similar to appraisal coverage for ASPs, we must ensure that digital signatures

computed over evidence during attestation are properly checked during appraisal.

The definition of a Lemma for signature coverage is similar in structure to ASP

coverage, so we leave the details to the Coq development. However, one additional

well-formedness constraint is worth mentioning here: disallowing evidence of the

form hhc p bs et, where et involves a signature evidence type. Preventing such

input and output CVM evidence ensures attestation will never perform a hash

over signed evidence.

To see why this poses a problem for generalized appraisal, consider the Cop-

land phrase: t1! SIG! HSH with a random nonce with ID n passed as ini-

tial evidence from the appraising party. This will produce evidence of the form:
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hhc p bs (gg p et0) where et0 is the type of evidence produced by executing t1 and

et0 mentions the nonce ID n. Recall that appraising hash evidence involves recon-

structing the hash value based on the type of evidence hashed. Signed evidence of

type gg p et0 is generated at attestation-time using the private key of the signing

place p. Unless the appraiser is also p, it should not have access to that private

key, and thus cannot re-create the signature. The random nonce embedded as

initial evidence causes the hash to di↵er for each run of the protocol, preventing

the target from precomputing the signature and passing it to the appraiser as a

golden value.

To ensure the appraiser can always reconstruct golden hashes, we limit attesta-

tions to those where hashes are performed over primitive measurement values and

other hash composites of the same. While seemingly overly-restrictive, it aligns

with the intended use of hashing in Copland. Similar to not none none, rather

than complicating the Copland language definition we introduce predicates over

inputs and outputs of the CVM to prevent problematic combinations of Copland

phrases and initial evidence that produce such “hashed-signature” evidence that

elude appraisal. Discovering and handling corner cases like these early in the

system design lifecycle justifies the extra e↵ort involved in formal verification of

attestation and appraisal components.
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5.3 Verification LOC Statistics

5.3.1 Copland Reference Semantics

 
Reference Semantics 

 
 File Name LOC Totals 

Implementation Term_Defs 80 80 

Specification 
+ 

Proof 

More_lists 300  
Defs 9  
Term_Defs 376  
Term 321  

Event_system 541  

Term_system 200  
Trace 740  
LTS 800  
Main 285 3572 

Automation 

Preamble 16  
AutoPrim 27  
Defs 67  
Term_Defs 48  
Term 61  

Term_system 26  
Trace 55  
Main 12 312 

   

Total 
LOC: 
3964 
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5.3.2 CVM (Attestation)

 
CVM (Attestation) 

 
 File Name LOC Totals 

Implementation 

ConcreteEvidence 52  
Maps 20  
GenStMonad 54  
StVM 6  
MonadVM 170  
Impl_vm 32 334 

Specification 
+ 

Proof 

ConcreteEvidence 1230  
AxiomsIO 33  
EqClass 45  
Maps 40  

Helpers_VmSemantics 346  
External_Facts 80  
VmSemantics 1200 2974 

Automation 

ConcreteEvidence 21  
MonadVM 59  
Auto 94  

Helpers_VmSemantics 57  
VmSemantics 25 256 

   

Total 
LOC: 
3564 
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5.3.3 Appraisal

 
Appraisal 

 

 File Name LOC Totals 

Implementation 

StAM 15  
OptMonad 16  
Appraisal_Defs 107  
Impl_appraisal 19  

Impl_appraisal_alt 33 190 

Specification 
+ 

Proof 

Appraisal_Defs 439  

Appraisal_AltImpls_Eq 123  

Helpers_Appraisal 2816  
Appraisal 990 4368 

Automation 

AutoApp 99  
Appraisal_Defs 104  

Helpers_Appraisal 589 792 

   
Total LOC: 
5350 
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5.3.4 LOC Totals

By artifact:

• Reference Semantics: 3964

• CVM (Attestation): 3564

• Appraisal: 5350

By code category:

• Implementation: 604

• Specification + Proof: 10914

• Automation: 1360

Total Overall LOC: 12878
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Chapter 6

Appraisal Soundness

While the verified Copland-based components provide a foundation for trusting

attestation results, components external to Copland also contribute to that trust.

Even with strong properties like appraisal coverage it remains unclear what one

can safely infer about a target system based on a given appraisal result. The

strength of such inferences is at the core of a property that we will henceforth refer

to as appraisal soundness. Our motivation for discussing appraisal soundness is

not to arrive at a formal theorem that declares once-and-for-all that attestation

implies absolute security. Even the task of stating formal properties like these

is complicated by experience in security that shows adversaries will find ways to

corrupt any useful system [40, 59, 60], and that layered attestation schemes have

inherent trade-o↵s involving trust [12]. Instead we aim for a more nuanced notion

that incorporates a broader view of attestation contexts.

To position appraisal soundness within a broader workflow that involves the

design, execution, and analysis of Copland-based attestation scenarios, we intro-

duce the Copland Verification Architecture in Figure 6.1. Within this workflow

the Appraiser platform takes a Copland phrase t as input and relies on a stateful
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execution environment (introduced in Section 4.2.4) to generate and remember a

random nonce, construct an attestation session around that nonce, and perform

appraisal over the evidence result. The Target platform leverages the CVM to

carry out the request and emits an event trace guaranteed to respect the Event

System partial ordering derived statically from t. In addition to these core attesta-

tion components, appraisal soundness depends on ambient factors of the execution

environment including its Security Architecture and the strength of protocols with

respect to an active adversary attempting to subvert attestation goals.

6.1 Security Architecture

Alongside the CVM on the Target platform, measurement components m1,

m2, ..., and target applications ax, ay, ..., operate within a Security Architecture

depicted in Figure 6.1 by dotted green lines around components. The analy-

sis framework remains parameterizable over such means of isolation that protect

trusted measurers from their potentially-untrusted targets. This supports drop-

ping in alternative isolation mechanisms as deemed appropriate by the consumer

of a particular attestation. Access control and inter-component dependencies also

contribute to the Security Architecture for a given attestation scenario. In the

workflow of Figure 6.1 we can encode such properties in first-order syntax accepted

by a model-finder that incorporates them into a higher-level adversarial analysis.

Assuming the security mechanisms are properly configured, a final analysis pass

may confirm mitigation of certain classes of attacks on the attestation system. In

Section 6.4 we instantiate a concrete measurement architecture that leverages the

formally verified seL4 microkernel [32] for component separation and analyze its

design in the context of a Copland-based attestation.
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63



6.2 Adversary Analysis

Rowe [60] lays the foundation for formal analysis of active adversaries in a

layered attestation context. This formalism models an adversary capable of cor-

rupting and repairing arbitrary measurement components, and gives formal justifi-

cation for bottom-up measurement strategies that confine an adversary to “recent

or deep” corruptions that are known to be more di�cult in layered architectures.

In more recent work, Rowe et. al. [58] compose the formalisms of a capable ad-

versary with an idealized semantics of honest Copland participants to automate

analysis of Copland protocols via novel theory extensions to the general-purpose

Chase [57] model-finder.

Leveraging this body of work, we incorporate proofs about CVM execution

and appraisal from the current work to discharge axioms made within the anal-

ysis workflow in Figure 6.1. The adversarial analysis leverages a model-finding

tool developed by our collaborators at MITRE instrumented explicitly to analyze

Copland-based protocols [58]. Given a Copland phrase t and an indication of the

measurement target(s) of interest, the tool produces an initial set of models that

describe all distinct ways an active adversary could corrupt the target and go

undetected by measurement. This initial analysis relies on existing axiomatiza-

tions of Event Systems and an adversary that are encoded as first-order logical

statements understood by the underlying Chase [57] model-finder. The encod-

ing of Event Systems characterizes honest measurements derived directly from t,

while the adversarial model encodes rules of a capable attacker that can arbitrarily

corrupt and repair the very same measurement components.

One of the goals of a well-designed attestation system is that it should place

a high as possible burden on the attacker [59,60]. Towards this goal, our analysis
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framework incorporates additional constraints to reflect properties of the security

architecture, eliminating certain classes of attack from consideration. More con-

cretely, we encode architectural properties as logical assumptions to the model

finder to indicate corruptibility based on the integrity of individual components

and their contextual dependencies. With measurement protocol and architectural

assumptions incorporated, the attack models that remain must be acceptable to

the consumer of attestation. Otherwise, an iteration to refactor the Copland pro-

tocol and accompanying security architecture may be in order. Section 6.4 gives

representative examples of attack models uncovered in the design of a real-world

UAV attestation scenario.

6.3 Component Implementations

While the generality of Copland makes it amenable to higher-level analysis,

it also leaves lower-level component implementations under-specified. The core

artifacts introduced in this work refine the execution semantics of Copland to a

more fine-grained notion of bundling and appraisal of evidence. While the Coq

verification environment supports rigorous proofs about their subtle interaction,

these artifacts remain “executable” only within this formal setting. In order to

extend appraisal soundness to running systems, the task remains to instantiate

the components that orchestrate Copland protocols, along with their external

dependencies, within a richer executable context.

Towards this goal, we implemented the Haskell Attestation Manager, a col-

lection of libraries written in the functional language Haskell [42]. Haskell comes

with a wealth of existing libraries that aid in instantiating a concrete execu-

tion environment for Copland that includes communication mechanisms, crypto-
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graphic primitives, concurrency support, binary encoding/decoding of inductive

datatypes, file I/O, and more. In addition to supporting these “drop-in” services,

the latest version of the Haskell AM links to the formally verified core components

automatically via Coq’s built-in code extraction mechanism. While this garners

increased confidence in the resulting attestations, the primary utility of the Haskell

AM has been as a rapid prototyping environment to tease apart the design space

of integrating formal and non-formal components of an attestation system. On-

going work [31] builds on these insights in developing an AM in CakeML [36], a

language that enjoys a compiler with formal semantics.

With the executable environment of the Haskell AM in hand, we can now come

full circle to instantiate the virus checker attestation scenario from Section 2. As

it turns out, this is a special case of a more general class of attestation called

Certificate Style as proposed by Helble et. al. [27]. A Copland phrase for this

pattern is repeated here as follows:

*P0,n: @P1[(attest P1 sys) ->

@P2[(appraise P2 sys) ->

(certificate P2 sys) ]]

Here we see a pipeline of ASPs carried out by three participants: place P0 the

Relying Party, place P1 the Attester and P2 the Appraiser.

Mapping participant IDs to the virus checker is somewhat straightforward: P0

becomes the top-level client, P1 the target platform hosting the virus checker,

and P2 the trusted-third-party appraiser. The main insight for configuring the

rest of the phrase is that attest can leverage its own “nested” CVM instance

to run any Copland-specified protocol that measures the target of interest (here

the virus checker and its operational environment). If we likewise instantiate
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appraise with our generalized appraisal procedure, the Appraiser place is prepared

to evaluate the potentially intricate evidence structure bundled by attest. Finally,

the certificate ASP could be a simple digital signature over the appraised evidence,

or a more complicated summary of the same. Such a certificate strategy benefits

from the formal semantics of Copland since the appraisal result is an ETc value,

a convenient structure for post-processing appraisal results.

The codebase of the Haskell AM prototype, along with the full details of the

Flexible Mechanisms pattern instantiations, are freely available on GitHub [54].

An early version of this prototype is outlined in Petz and Alexander [51], however

the current version has undergone significant refactoring in response to evolution

of the Copland language itself, its formalization, and other more traditional soft-

ware engineering considerations like enhanced modularity and usability. We also

present more details of the Haskell implementation and instantiate the remaining

Flexible Mechanisms patterns from Helble et. al. in Chapter 7.

6.4 Case Study: DARPA UAV Demonstration Platform

In order to exercise the Copland Verification Architecture workflow in a real-

world case study, we will now give an overview of the demonstration platform

of an Unpiloted Air Vehicle (UAV) system taken from our work on the DARPA

CASE program. Our task was to extend a preexisting legacy implementation

with support for layered attestation built with Copland Attestation Managers,

and formally analyze the resulting system. This new architecture will exhibit

desirable security properties that we can leverage as sound assumptions in the

analysis framework in Figure 6.1.

The scenario features two communicating systems, a ground station and a
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UAV. The UAV accepts flight plans from the ground station in the form of way-

points and attempts to navigate within security constraints. Both the ground

station and UAV run preexisting UxAS [3] software, running in Linux. In the

unhardened system the UAV has no assurance that the ground station it accepts

directions from is trustworthy. The UAV has no means of distinguishing a compro-

mised or fake ground station from a genuine, trustworthy one. To address these

concerns, we extend the two systems to support Copland attestation protocols.

6.4.1 Ground Station and UAV Security Architectures

The hardened security architectures for the UAV and groundstation platforms

appear in Figures 6.3 and 6.2, respectively. The UAV platform listens for com-

mands from a groundstation, then consults with the onboard attestation manager

component (AM) to determine whether or not the commands are coming from a

trustworthy ground station. If appraisal succeeds, the Filter component caches

the identity of the trusted ground station and accepts its subsequent commands

for some user-defined time window. The Ground Station architecture involves

two attestation managers at di↵erent layers of the system called the User AM

and Platform AM. The User AM sits inside a Linux VM environment and is

responsible for application-specific measurements of UxAS,and also accepts attes-

tation requests from the UAV platform. The Platform AM runs as a native seL4

component and is responsible for measuring the neighboring linux environment.

The formal guarantees of the seL4 microkernel ensure that the Platform AM is

completely isolated from its potentially-corrupted target of measurement.
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6.4.2 Copland Phrase Description/Components

A Copland phrase to measure the transformed ground station target platform

appears in Figure 6.4. The phrase begins with: ⇤heliAM, n : which designates

heliAM (the UAV AM component from Figure 6.3) as the appraising place and

also specifies a nonce n be passed as initial evidence with the attestation request.

Next, @userAM[...] specifies that the terms inside [...] be executed at the userAM

place. userAM and platAM are place identifiers that represent distinct attestation

domains both running on the remote ground station (UserAM and PlatformAM

from Figure 6.2).

As soon as userAM receives the initial request, @platAM[...] specifies that it

initiate a request to the (more privileged) Platform AM. platAM starts by invoking

query img to read the contents of the seL4 image img loaded at boot-time into
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*heliAM, n:
@userAM [

@platAM [ (query_img bootMem img) ->
((kim userAM ker)

+~+
(uim userAM uam)) -> !

] ->
((uam userAM uxas_ctxt)

+~+
(uam userAM uxas)) -> !

]

Figure 6.4. UAV Copland Phrase

protected memory. This image serves as evidence of the static configuration of all

components on the ground station platform at startup. The abstract nature of

places in Copland allows us to represent this protected memory region as its own

place identifier bootMem that will be incorporated into analysis.

After querying the image, platAM performs cross-domain measurements of

components at userAM. One is (kim userAM ker) that specifies an integrity mea-

surement of the linux OS kernel running at userAM. The other is (uim userAM uam)

that specifies an integrity measurement of the uam (Userspace Attestation Man-

ager) component that itself performs more specialized measurements of UxAS.

The +~+ operator specifies that both of its subterms may execute in parallel,

whereas -> requires strict linear sequencing.

After receiving evidence of platform integrity from platAM, userAM proceeds to

perform specialized measurements of the target application. These measurements

perform dynamic monitoring of the execution context of the UxAS flight planning

software and UxAS itself. After completing its measurement, userAM signs the

accumulated evidence bundle and sends it in a response back to heliAM.
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6.4.3 Event Semantics

Figure 6.5 shows the Event System, a partial ordering on measurement events,

determined by the Copland phrase in Figure 6.4. This graphical output comes

from the model finder tool, but an identical partial ordering can be derived from

the Copland formal semantics in Coq. This ordering states that the boot image is

queried first, followed by the integrity measurements launched from platAM. The

integrity measurements are free to execute in any order, but must complete before

the specialized userspace measurements at userAM begin. This event ordering is

the first input into the automated attack analysis in the model finder, and its

soundness is justified by the Copland Virtual Machine that is formally verified to

uphold such measurement orderings.

Figure 6.5. Event System derived from the Copland phrase in Fig-
ure 6.4 above.

6.4.4 Architectural Assumptions

Given the measurement events in Figure 6.5, the model finding tool requires

additional assumptions about the environment in which these measurements are

carried out before it can produce a meaningful analysis. The first of these is an
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indication of the measurement event(s) of interest. In other words, the instant(s)

during attestation where we would like to determine if the adversary has su�-

ciently corrupted a specific target while avoiding detection. Figure 6.6 shows this

statement for our UAV attestation scenario, encoded in first-order syntax accepted

by the model finder. This logical statement asks for models where either uxas or

something in its execution context uxas ctxt are corrupt (phi predicate) after the

event where uam measures uxas.

l(E) = msp(userAM, e, uam, userAM, uxas)
=> prec(E,E2) &

phi(userAM, uxas, E2) | phi(userAM, uxas_ctxt, E2).

Figure 6.6. Assume adversary avoids detection at main measure-
ment event.

Given only honest measurement events and this event of interest, the model

finder will generate an exhaustive set of attack models assuming a capable ad-

versary that can corrupt and repair arbitrary components on the system. One

such model appears in Figure 6.7. Here we see the adversary has corrupted the

userspace AM (uam) after it was measured, and leveraged it to lie about the

corrupted state of uxas ctxt. It later covers its tracks by repairing uam. In to-

tal, the tool generates 74 essentially distinct attack models like this. Because

many of these attacks are unacceptable, analysis like this early in the design of

an attestation protocol is useful to pinpoint parts of the system that may require

hardening.

Further assumptions come from properties about dependencies of components

and the architecture where they operate. The statements in Figure 6.8 encode

that components at bootMem and platAM do not depend on any other components
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Figure 6.7. One attack model: corruption and repair of uam

for their own integrity. Without assumptions like these the analysis conservatively

assumes that for each component, there exists an arbitrary component co-resident

at its place capable of a↵ecting its integrity. Each of these statements are justified

by trust in specific components and their environment: bootMem is a protected

storage location; measurement components at platAM run in an isolated, native

seL4 environment with limited dependencies and limited-purpose code.

% No dependencies for components at bootMem or platAM
ctxt(bootMem, C, C2) => false.
ctxt(platAM, C, C2) => false.

Figure 6.8. Contextual assumptions about “deep” components in
the architecture.

Statements in Figure 6.9 encode additional assumptions about the corrupt-

ibility of components. The first says that only way to corrupt a component at

platAM is by corrupting img at bootMem. The final two statements say that the
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boot image cannot become corrupted, and that the only way for uam to become

corrupted is via a corrupted OS kernel. The first of these is justified by protecting

the image somewhere like trusted hardware or a dedicated seL4 component, where

only highly-privileged boot loader code has write access. To justify the latter, in

our prototype we limit the code of uam to very specific measurement functions and

include them as a library packaged with the Copland Virtual Machine at userAM.

% platAM components only corrupted via a corrupt boot image
l(E) = cor(platAM, C) => phi(bootMem, img, E).

%% img in bootMem cannot be corrupted
phi(bootMem, img, E) => false.

% user AM (uam) only corrupted via a corrupt kernel
l(E) = cor(userAM, uam) => phi(userAM, ker, E).

Figure 6.9. Assumptions about the “corruptibility” of components.

Figure 6.10 lists four final assumptions that eliminate most of the remaining

feasible attack models. The first three make explicit the context of the remaining

components in userspace. The final assumption ignores attacks on the kernel.

Because dynamic attacks on OS kernels are feasible in practice, one could remove

this assumption to explore the implications of such an attack. However, for our

final analysis we assume that the (kim userAM ker) measurement launched from

platAM gives su�cient evidence that the kernel will run uncorrupted long enough

for the other measurements that depend on it to complete.

Given all of the above assumptions, the attack model in Figure 6.11 char-

acterizes one of the two remaining ways to corrupt uxas and go undetected (an

analogous model exists for corrupting uxas ctxt). Specifically, the adversary must
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% All components at userAM (except ker itself)
% depend on ker
ctxt(userAM, C, uam) => C = ker.
ctxt(userAM, C, uxas_ctxt) => C = ker.

% In addition to ker, uxas depends also on uxas_ctxt
ctxt(userAM, C, uxas) => C = ker | C = uxas_ctxt.

% Ignore attacks that corrupt ker
l(E) = cor(userAM, ker) => false.

Figure 6.10. Final Architecture Assumptions

corrupt uxas (or its context) after they are measured and before the flight planning

services are consumed. This is an example of a recent or time-sensitive attack that

is in theory more di�cult to execute [60]. In what follows, we discuss strategies

for making these types of attacks more di�cult still by repeated measurement,

thus justifying them as acceptable attack models.

Figure 6.11. Final Attack Model
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6.4.5 AM Monad alternatives

From the appraiser’s perspective a Copland protocol is executed atomically

before evidence bubbles back to its environment. While it is possible to craft stan-

dalone phrases that are su�cient for simple, static attestation scenarios, there are

cases where an appraiser might desire more flexibility to orchestrate the execution

of multiple Copland phrases and compose intermediate evidence results. Pure

Copland has no persistent state and no error handling mechanism to account for

failed or divergent attestations. To address these issues we deploy the Attestation

Manager (AM) Monad environment of Section 4.2.4.

An example computation in the AM Monad called attest_gs prepares, exe-

cutes, and appraises a Copland phrase from the UAV scenario as follows:

attest_gs t :=

do {n <- generateNonce;

ev <- run_cvm(n,t);

b <- appraise n t ev;

update_filter(b)}

For flexibility we parameterize attest_gs by the Copland phrase t intended to

measure the groundstation target. Assuming the phrase from earlier in Figure 6.4

is assigned the name case_cop, we could instantiate this AM Monad computation

via function application: attest_gs case_cop.

Earlier we saw that even with strong architectural protections and bottom-up

measurement strategies, an adversary can escape detection by performing timely

attacks on components after they are measured. One way to make these attacks

less e↵ective is to perform periodic re-measurement of the system:
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do_while(true) (

attest_gs case_cop;

sleep(s))

Here s is within some time interval chosen by the appraiser to make attack and

repair of the target di�cult for the adversary. Depending on the scenario and

capabilities of the attacker, s could be bounded under a certain threshold, or even

randomly generated within an acceptable range.

However, a problem arises if the time required to complete all measurements of

the phrase exceeds s. Recall that the case_cop phrase involves measurements of

deep components that may require significant time and system resources. In real-

time embedded systems with hard scheduling requirements, attestation services

might be resource-constrained to complete their measurement tasks [11]. This

limitation is at odds with deeper measurements that tend to stall or freeze the

system to capture its state. When full appraisals are too costly, performing one

deep measurement of the system during initialization followed by repeated, shallow

probes may be su�cient to establish a baseline and maintain evidence of integrity.

Partitioning case_cop into its deep and shallow portions has the form:

case_deep :=

@userAM [ @platAM [ (query_img bootMem img) ->

((kim userAM ker)

+~+

(uim userAM uam)) -> ! ]]

case_shallow :=

@userAM [ ((uam userAM uxas_ctxt)

+~+

(uam userAM uxas)) -> ! ]
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A final AM Monad computation that performs a deep attestation of the ground

station at frequency s, and shallow attestations at frequency r is as follows:

do_while(true) (

attest_gs case_deep;

do_for_duration(s) (

attest_gs case_shallow;

sleep(r)

)

)

The AM Monad environment is a standard state and exception monad with

a formal definition in Coq [50] and prototype implementations in CakeML and

Haskell [31, 54].
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Chapter 7

Instantiating Flexible

Mechanisms

So far we have introduced a collection of formal artifacts core to attestation and

appraisal of Copland-based protocols. The Copland Virtual Machine of Section 4.1

takes an attestation term specified in Copland along with initial evidence, and pro-

duces an evidence bundle that is input-compatible with the generalized appraisal

procedure of Section 4.2. The Copland Verification Architecture of Chapter 6

lifts the formal properties of these artifacts into a higher-level analysis framework

based on model finding to characterize an active adversary’s ability to thwart a

given attestation goal. Finally, in Section 6.4 we instantiated this pipeline with a

specific attestation scenario tailored to an existing demonstration platform under

the DARPA CASE. e↵ort. While this served as an illustrative proof-of-concept for

how to leverage the pipeline to gain confidence in a singular attestation design, it

left unresolved how an implementation might incorporate the formal components

as executable artifacts, together with non-formal components, to support a diverse

collection of attestation patterns.
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In this chapter we begin to fill in these gaps by introducing the Haskell At-

testation Manager prototype implementation and demonstrate how it supports

a larger collection of attestation shapes, namely the Flexible Mechanisms attes-

tation scenarios proposed in the work of Helble et. al. [27]. These shapes were

classified by a group of experts in attestation, and arose in part to comply with

and influence guidance of an IETF working group focused on Remote ATtestation

procedureS (RATS) [5]. Given their origins, these attestation patterns serve as

an evolving benchmark that any attestation framework should aim to support.

7.1 Haskell Attestation Manager

The Haskell Attestation Manager is a collection of libraries written in the func-

tional language Haskell [42] that provide a concrete execution environment for

Copland attestation protocols. Because Copland was designed to run on hetero-

geneous systems, its protocol descriptions leave implementation details abstract as

parameters. These configurable items include communication mechanisms, mea-

surement procedures, cryptographic primitives, and concurrency support. Haskell

comes with a wealth of existing libraries to meet these needs including TCP/IP,

JSON, cryptography, multi-threading, shared memory, binary encoding/decod-

ing, file I/O, and more. An early version of this prototype is outlined in Petz and

Alexander [51], however the current version has undergone significant refactoring

in response to evolution of the Copland language itself, its formalization, and other

more traditional software engineering considerations like enhanced modularity and

usability. The Haskell AM codebase is freely available on GitHub [54].

In addition to supporting the instantiation of Copland’s “drop-in” services,

the current version of the Haskell AM links these to the formally verified core
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components automatically via code synthesis. Coq’s code extraction mechanism

supports automatic translation of the core attestation components defined in Gal-

lina (Coq’s built-in functional language) to executable code in Haskell. While

this garners increased confidence in the resulting attestations, the translation it-

self lacks formal guarantees about how semantics are preserved from Gallina to

Haskell. Setting aside the advantages of such “foundational” guarantees, the rest

of this section outlines the useful outcomes of the design and development of the

Haskell AM that emerge even without total correctness. In particular, we focus on

its primary utility as a rapid prototyping environment to tease apart the design

space of integrating formal and non-formal components of an attestation system.

The act of prototyping such a system forces implementation decisions that

concretize details left abstract in its formalization. Furthermore, these decisions

inform two complimentary avenues of design. The first is a software architecture

that influences subsequent (perhaps more formal) attestation manager implemen-

tations. There is ongoing work that brings patterns from the Haskell AM to one

written in CakeML [36], a language that (unlike Haskell) enjoys a formal seman-

tics down to metal. The other avenue is identifying parts of the system that may

warrant further formalization. Because a prototype must concretize details left

abstract in its formalization, additional complexity may be uncovered, leading to

more opportunities for bugs. This under-specification is apparent in mechanisms

that orchestrate execution of parallel Copland phrases outlined in Section 7.1.5.

7.1.1 Admitted Definitions in Formal Spec

The first step towards integrating the formal components in Coq with the ex-

ecutable Haskell prototype is to fill in definitions left abstract in the former. The
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standard way to omit definitions in Coq is the Admitted keyword. Interpreted

in the context of a proof, Admitted acts as an axiom, or an assumption of some

fact without explicit proof. From a computational and code synthesis perspective

Admitted serves as an empty definition, assumed to be instantiated after verifica-

tion in a separate executable environment. From this perspective such a definition

is uninterpreted during verification; its concrete implementation is delayed until

code extraction. These hollow definitions in the specification represent items that

are either too low-level to warrant formalization, or stand-in for calls to external

functions like I/O procedures that are unnatural to define in Coq explicitly.

Here we will consider Admitted definitions in two distinct categories: datatypes

and functions. An example of an Admitted datatype is the type for raw binary

data evidence called BS (short for “Byte String”):

Definition BS : Set. Admitted.

This Coq syntax means that we are defining a type called BS, to be used in a

computational setting (in the universe Set), with no concrete definition (Admitted).

With this uninterpreted type in hand, we can use it to construct larger datatypes

that depend on it:

Definition RawEv := list BS.

Here the type for raw evidence is defined as a sequence of BS values. Because

the list datatype is defined first class in Coq we can reason directly about how

the CVM bundles evidence into RawEv structures during attestation, all while

referring to the BS type by name alone (see more details in Section 4.1).
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As one example of an uninterpreted function, consider encodeEvRaw:

Definition encodeEvRaw(e:RawEv): BS. Admitted.

The type signature indicates a transformation from a sequence of BS values to a

single BS value. This is invoked within the CVM (and likewise during appraisal)

to compact its internal evidence structure in preparation for cryptographic opera-

tions like signing or hashing that expect a single binary value as input. The choice

to leave encodeEvRaw uninterpreted in Coq is due to its low-level nature, and be-

cause its implementation depends on concrete instantiation of the BS datatype.

To instantiate BS in Haskell, we chose the ByteString type from the popular

Data.ByteString library [14]:

module BS where

import qualified Data.ByteString as B (ByteString, ...)

type BS = B.ByteString

A ByteString is a time and space e�cient representation of binary data, en-

coded internally as Word8 arrays in C. ByteStrings are standard in Haskell li-

braries that handle binary data, including most communication and cryptographic

APIs. A convenient instantiation for encodeEvRaw is the concat function from

Data.ByteString that simply concatenates the raw evidence sequence into one long

ByteString value. Although verification of attestation and appraisal never require

unfolding this definition, we can still ensure within the Coq environment that

encodeEvRaw is called at the correct time and over appropriate raw evidence pa-

rameter values.

While the above Admitted definitions stand in for low-level manipulation of

binary data, other kinds of Admitted definitions stand in for IO operations that
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invoke services external to the core attestation process. These IO stubs invoke

ASP measurement routines, cryptographic libraries, communication sessions with

remote CVMs, and parallel CVM instances. Some of the parameters to these

stubs are themselves uninterpreted datatypes in Coq:

Definition Plc, ASP_ID, TARG_ID, Arg: Set. Admitted.

These represent configuration parameters passed via Copland phrases, for example

as parameters to ASP procedures:

Inductive ASP_PARAMS: Set :=

| asp_paramsC: ASP_ID -> (list Arg) -> Plc -> TARG_ID -> ASP_PARAMS.

The only assumption made about these datatypes in the Coq specification is that

they have decidable equality:

Definition eq_aspid_dec: forall x y: ASP_ID, {x = y} + {x <> y}.

Proof. Admitted.

We arbitrarily instantiate the first three of these (Plc, ASP ID, TARG ID) with the

Haskell type Int, and Arg with the Haskell type String. Full Coq type signatures

for the uninterpreted IO stubs appear in Figure 7.1.

Each ASP and cryptographic function (do asp, do sig, do hash) ends with a

parameter of type Event ID. This parameter is used purely for verification to

log each invocation as a unique attestation event. As such, we can erase that

parameter upon extraction using Coq’s Extraction Implicit command:

Extraction Implicit do_asp [3 4].
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Definition do_asp (params :ASP_PARAMS) (e:RawEv) (mpl:Plc) (x:Event_ID) : CVM BS.
Definition do_sig (bs:BS) (p:Plc) (sigTag:Event_ID) : CVM BS.
Definition do_hash (bs:BS) (p:Plc) (hshTag:Event_ID) : CVM BS.
Definition do_start_par_thread (loc:Loc) (t:Term) (e:RawEv) : CVM unit.
Definition do_wait_par_thread (loc:Loc) (t:Term) (p:Plc) (e:EvC) : CVM EvC.
Definition doRemote_session (t:Term) (pTo:Plc) (e:EvC) : CVM EvC.

Figure 7.1. Coq type signatures for Admitted IO stubs.

The above will erase the third and fourth parameters of do asp at each of its call

sites in the extracted code. Here the place tag parameter is also irrelevant dur-

ing concrete execution. Specifying each IO stub return type as a CVM monad

computation allows their invocation inline within the Copland Compiler imple-

mentation. Recall that the CVM monad in Coq uses a stateful record to manage

evidence and track events during verification. We will see later in Section 7.1.4

how to leverage Haskell’s monad transformer library to extend the CVM monad

in the extracted implementation to acquire a read-only environment, error, and

IO functionality, all without modifying the stateful evidence bundling.

7.1.2 Deriving typeclass instances in Haskell

Notice in the above instantiations how the uninterpreted datatypes and func-

tions are organized into distinct modules. This module structure is derived directly

from the original Coq definitions, and plays nicely with Coq’s code extraction.

Coq’s SeparateExtraction directive preserves module boundaries upon extraction,

thus allowing a strategy where extracted modules (with empty definitions) can be

ignored and replaced wholesale with their concrete Haskell counterparts. These

concrete module instantiations are then linked with other extracted and non-

extracted code, where module imports are handled automatically for extracted

code based on the import hierarchy in the original Coq definitions.
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While the core implementations of attestation and appraisal components can

be extracted directly from Coq and integrated without modification into the

Haskell AM, other components require a small amount of wrapping or extend-

ing to play nicely with Haskell’s typeclass system. In particular, we often wish to

pretty-print or read representations of Copland datatypes, which requires them

to conform to Haskell’s Show and Read typeclass instances. For our prototype it

is also often necessary to encode (decode) datatypes to (from) their binary and

JSON representations. We can leverage Haskell’s Typeclass Deriving mechanisms

to automatically derive such instances for most datatypes. This supports a strat-

egy where we extract datatype definitions directly from Coq, then add a “wrapper

module” that simply decorates these definitions with Deriving clauses. Deriving

JSON instances requires additional custom configuration, but we leave further

discussion of JSON component interfaces to Section 7.2.

7.1.3 ASP Servers

Because Copland was designed with generality in mind, measurement and

cryptographic services remain abstract in protocol specifications as simple iden-

tifiers. However, during protocol execution these identifiers must be mapped to

concrete implementations. In the Haskell AM we instantiate such services external

to the CVM with a common abstraction called an ASP Server. An ASP Server

has a unique address and listens for requests sent to that address. Upon receiving

a request, the server runs a custom handler depending on its role. Each handler

has the following general type:

(FromJSON a, ToJSON b) => (a -> IO b)

Its purpose is to accept a request message of type a, perform some IO action,
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and return a response message of type b. Also notice that the input type must

have a FromJSON typeclass instance, and likewise the output type a ToJSON

instance. Such a JSON interface is crucial for generality, and to support re-use

and interoperability of ASPs implemented in diverse language environments.

In the Haskell AM, these servers are implemented as Unix Domain Servers,

where each socket address derives its namespace from the file system. In the Cop-

land language, the notion of “address” is lifted to more abstract Place identifiers.

However in a concrete implementation each CVM instance must be configured

with mappings from Place IDs to concrete addresses before execution. In ad-

dition to ASP servers there are other external services required by a CVM that

include cryptographic implementations, communication sessions to remote CVMs,

and local interaction with parallel CVM servers. Configuration of these services

is discussed briefly in Section 7.1.4 and JSON interfaces to these components are

outlined in Section 7.2.

7.1.4 Instantiating the CVM Monad

In the formal specification the Copland Virtual Machine is implemented within

an environment called the the CVM Monad. In Coq this environment is defined

from scratch as a monolithic state and failure monad, and is instrumented with

proof automation tactics to unfold monadic statements in a principled way. Al-

though the state and failure e↵ects are su�cient to confirm important properties

of the CVM during verification (event trace ordering, evidence bundling, etc.), a

richer computational context is required to carry out concrete executions of Cop-

land protocols. In particular, the protocols require a collection of static (read-only)

configuration parameters and also require access to an external IO environment
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to carry out measurement and cryptographic tasks.

Contrary to Coq’s somewhat rigid verification environment, Haskell comes

with a standard and well-supported mechanism to glue together a collection of di-

verse computational e↵ects: monad transformers [38]. Monad transformers allow

us to build a monadic type incrementally via a “stack” of monadic transformers,

where each transformer adds a class of e↵ect. Since we already defined the CVM

as a state monad in Coq, we will need to map that functionality to the State

Monad Transformer (StateT) in Haskell. In addition, we will need to add an

immutable configuration context (ReaderT) and an IO environment (IO Monad).

The top-level Haskell type for this transformer is as follows:

import qualified Control.Monad.State.Lazy as SL

type St s = SL.StateT s COP

The type for St says it is a computation that supports stateful operations over a

structure of type s, and is composed with an underlying monad COP (COP will

be introduced shortly). Recall that in Coq we implemented St as a state monad

from scratch with the standard primitives like ret(return), bind, put, and get. We

then instantiated the CVM monad in Coq with the CVM state structure cvm st:

Definition CVM := St cvm_st.

To leverage the transformer functionality in Haskell we alias each monadic

primitive of the St monad in Coq with its Haskell counterpart. The names of

these primitives, defined in Figure 7.2, must match those defined in formal en-

vironment. This allows synthesized code to link properly with the surrounding

Haskell prototype. Although our goal for the prototype is not foundational cor-

rectness, we can be confident that the monadic primitives for St in Coq behave
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the same as their counterparts in Haskell. With these primitives shadowed in

Haskell, the synthesized CVM code will be able to reference them purely by name

and benefit from the robust built-in monadic support.

ret :: a -> CVM a bind :: CVM a -> (a -> CVM b) -> CVM b
ret = SL.return bind m f = m SL.>>= f

put :: s -> CVM () get :: CVM s
put = SL.put get = SL.get

Figure 7.2. Shadowing of monadic primitives in Haskell.

While the COP monad is not referenced at all in the formal specification,

we can leverage the compositionality of monad transformers in Haskell to add

underlying Reader and IO functionality to concrete CVM executions:

import qualified Control.Monad.Reader as RT

type COP = RT.ReaderT Cop_Env IO

The base-level IO monad provides access to the external input/output environ-

ment: access to files, networks, system entropy, etc. The ReaderT transformer

supports read-only access to a static, immutable environment, configured before

the monadic computation begins. Purely within Haskell we instantiate this envi-

ronment as a record structure called Cop Env in Figure 7.3 that contains configu-

ration items needed during interpretation of Copland phrases in the CVM.

While some of these fields are simple flags that aid in prototyping and debug-

ging (simulation, debug), others provide crucial pointers to components external

to the CVM during Copland phrase execution. One example is the nameServer

field which maps Place identifiers to concrete addresses, providing guidance for
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data Cop_Env =
Cop_Env { simulation :: Bool,

debug :: Bool,
nameServer :: M.Map Plc Address,
sig_mechanism :: Sign_Mechanism,
asp_sockets :: M.Map ASP_ID Address,
parServer :: Address }

Figure 7.3. The Cop Env environment for read-only configuration
of the CVM.

@ term interpretation. Fields like sig mechanism and asp sockets map abstract

cryptographic and measurement primitives to concrete services during execution.

It is the responsibility of each platform owner to populate these mappings to sup-

port a given Copland phrase. While such a registration process is largely out of

scope for the current work, we describe some related experiments in Section 7.1.6.

Finally, the parServer field points to a local server that handles parallel execution

of Copland phrases, which is discussed in more detail in the following subsection.

7.1.5 Parallel Interpretation of Copland Phrases

In the formal specification of the CVM, interpretation of parallel Copland

phrases (terms involving
⇡⇠) is modeled as an asynchronous interface to an assumed

external CVM instance responsible for running phrases in a parallel thread of

control. The core of this interface is specified in Coq as follows:

Definition do_start_par_thread (loc:Loc) (t:Term) (e:RawEv) : IO unit.

Definition do_wait_par_thread (loc:Loc) : IO RawEv.

do start par thread specifies a Copland phrase and initial raw evidence sequence

to run in parallel, and also a Loc identifier that indicates a location to listen for

the evidence result. do wait par thread models the corresponding block-waiting
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operation to extract evidence from a given Loc. Because Copland is designed to

run in diverse environments, this interface leaves the type of Loc abstract, and also

does not make any assumptions about specific models of concurrency supported

by the underlying execution environment.

To see how these two functions interact, recall the general shape for compila-

tion of parallel Copland phrases within the CVM:

copland_compile (abpar_par loc sp t1 t2) :=

(e1,e2) <- split_ev sp

do_start_par_thread loc t2 e2 ;;

put_ev e1 ;;

copland_compile t1

...

e1’ <- ...

e2’ <- do_wait_par_thread loc

join_par e1’ e2’

Notice first that the parallel term being compiled is preannotated with a memory

location loc used to share evidence between the main and parallel CVM threads.

Critically, the same loc value is passed to both the start and wait commands to

facilitate execution of the t2 subterm while the t1 subterm is evaluated locally.

These loc annotations are populated by an input list provided in a preprocessing

phrase before compilation. In the prototype we acquire this list before compilation

from a parallel CVM server, and rely on assumptions that each memory location

in the list is unique and initially empty. In the current Coq specification there are

no formal constraints on the list besides that it has su�cient size to completely
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annotate the phrase. Proofs about the formal semantics only rely on matching

loc parameters between the start and wait commands.

The parallel CVM server is responsible for maintaining a pool of available lo-

cations that act as shared memory cells to hold evidence passed between the main

and parallel CVM threads. Although the main thread could spin its own child

threads to avoid a separate parallel server altogether, decomposing the system

in this way is more general and stays compatible with architectures that do not

have first-class multithreading. This style of message-passing concurrency is more

general and common in embedded/real-time systems architectures.

reserve_locs :: Term -> CVM [Locs]
reserve_locs t := do

tSize = thread_count t
(AckInitMessagePar locs) <- par_server_session (InitMessagePar tSize)
return locs

handle_par_init :: IO ()
handle_par_init := do

(InitMessagePar tSize) <- receive
atomically $ do

ls = read locs_var
if (length ls < tSize)

then retry
else do

(locs, rest) = partition ls tSize
locs_var := rest
send (AckInitMessagePar locs)

Figure 7.4. Pseudocode for reserve locs and handle par init.

Assuming a parallel CVM server has access to a pool of shared evidence cells,

it must be prepared to handle two types of requests from the main CVM thread.

The first is an initialization request that arrives before annotation and compila-
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tion of a Copland phrase. The goal of the initialization request is to reserve a list

of Loc values for phrase annotation. Pseudocode for the client and server imple-

mentations appear above in Figure 7.4. reserve locs first calculates the number of

parallel CVM threads required to execute a given Copland phrase, then initiates a

session with the parallel CVM server to reserve a collection of Locs of appropriate

size. handle par init represents the server-side logic, where it receives the term size

as a message, checks for availability of Loc cells, and sends them in response.

The two remaining types of requests a parallel CVM server must handle cor-

respond to the start and wait commands launched from the main CVM client

thread. Their pseudocode appears in Figure 7.5.

handle_par_start :: IO ()
handle_par_start := do

(StartMessagePar loc t e) <- receive
e’ <- run_cvm (t, e)
store[loc] := e’

handle_par_wait :: IO ()
handle_par_wait := do

(WaitMessagePar loc) <- receive
v := store[loc]
case v of

Just e ->
ls = read locs_var
locs_var := ls ++ [loc]
delete loc store

Nothing -> retry

Figure 7.5. Pseudocode for handle par start and handle par wait.

handle par start accepts a request to run a Copland phrase in parallel and store

the result evidence at a specific shared memory location. handle par wait retrieves
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an evidence value from shared memory and performs appropriate maintenance of

the shared memory store. While these pseudocode snippets provide insight into

the semantics of parallel CVM execution, their implementations fall outside of

the formally verified attestation components described in this work. In particular,

there are minimal guarantees about the semantics of shared memory when multiple

CVM instances must interact with the same parallel server. We leave the formal

modeling and verification of such properties to future work.

7.1.6 Configuration of CVM Nodes and ASPs

A prerequisite for executing Copland-based protocols is configuration of each

protocol participant with every service that it will need during execution. While

the primary role of the formal CVM semantics is to trace and analyze invocations

of these services, the current specification assumes the availability of each service

prior to execution. In a concrete implementation these services not only require

instantiation, but other components must be configured with a means to contact

them and request their services. The types of services required by the CVM during

execution include ASP, cryptographic, and external CVM instances (both local

parallel and remote). While we introduced these types of services individually in

Section 7.1.3, the di↵erent strategies for instantiating them has yet to be discussed.

In the current prototype there are two main methods of instantiation for ser-

vices. The first method is local spawning. In this method the top-level protocol

participant is responsible for spawning services as local background threads of

control. This process involves walking the Copland phrase(s) involved in a sce-

nario and deriving a set of nodes and their configuration such that each phrase

involved has the services it needs to complete execution. While the distributed
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nature of attestation scenarios in the real world makes this type of configuration

less realistic, its primary advantage is for rapid prototyping of end-to-end exam-

ples. The other spawning method is distributed manual spawning that requires

each node and service be configured and spun up individually, perhaps even by

separate platform owners if the nodes are in remote attestation domains. While

this is a more realistic execution context for attestation protocols, it takes much

more e↵ort and coordination to start up and tear down services during testing.

Although these methods are at opposite ends of the “automatic configurabil-

ity” spectrum, the Haskell AM prototype also o↵ers an important middle-ground

in the design space. First is a feature called the “default ASP” that designates an

ASP for handling all uninstantiated ASPs with a dummy implementation. If an

ASP is not mapped to a concrete address in the configuration, it will be mapped

to this default address. This approach supports an incremental strategy where

ASP implementations can be added one-by-one while testing the larger attesta-

tion evidence flow. Another configuration option in this same spirit is to specify

that only the CVM nodes themselves be locally spawned, but require ASP imple-

mentations not mapped to the default ASP be started manually. This alternative

focuses on incremental testing of ASP implementations and evidence pipelines

while avoiding complete configuration of CVMs. This approach also has the ad-

vantage of isolating debugging output to individual nodes rather than interleaved

in the top-level thread.

The Haskell AM highlights important points in the design space for configur-

ing CVM services that is simply absent from the formal specification. However

it is still biased toward ease of prototyping and as a testing ground for new fea-

tures of Copland. In particular, challenges remain to provide convenient and
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reliable ways to configure these systems in real-world distributed attestation en-

vironments. Nonetheless, ongoing work that involves attestation managers in

di↵erent programming language environments like CakeML [31], and a more di-

verse attestation testbed environment are already borrowing design decisions and

configuration patterns from this work.

7.2 Copland + JSON

Because components in our attestation manager prototype must communicate

structured data over general-purpose communication channels, we have designed

a JSON interface for interaction with di↵erent Copland-based services. The types

of messages exchanged include ASP and cryptographic servers, CVM attestation

sessions, and parallel CVM requests. In what follows we give representative exam-

ples of the JSON interfaces. Complete specifications are included in Appendix A.

7.2.1 General ADT JSON Schema

We represent Copland-based language terms as Algebraic Data Types (ADTs)

in the Haskell prototype. In JSON we represent ADTs as objects with two fields:

1. constructor-the constructor name as a JSON string (< string >). Construc-

tor names must be unique for unambiguous parsing.

2. data-An ordered JSON array (< array >) that holds the arguments for

that particular constructor. Members of the data array will di↵er from

constructor to constructor.

The general schema for ADTs (labelled by placeholder < ADT >) is as follows:
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{

"constructor": < string >,

"data": < array > | < ADT >

}

where the < ADT > alternative in the data field accounts for degenerate nesting

of constructors (for example in the ASP constructor below).

7.2.2 Copland JSON Schemas

The JSON object schemas for Copland phrases (t in Figure 3.1), Evidence

Types (ET in Figure 3.5), and Typed Concrete Evidence (ETc in Figure 4.7) ap-

pear in their entirety in Appendix A. Representative examples of schemas for

Copland phrase constructors that satisfy the < term > placeholder are as follows:

< asp params > := [ < number >, [< string >], < number >, < number > ]

{

"constructor": "Coq_asp",

"data": {"constructor": "ASPC",

"data": < asp params >

}

}
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{

"constructor": "Coq_asp",

"data": {"constructor": "SIG"}

}

{

"constructor": "Coq_att",

"data": [ < number >,

< term > ]

}

< SP > := “ALL” | “NONE”

{

"constructor": "Coq_bseq",

"data": [ [< SP >, < SP >],

< term >,

< term > ]

}

where < number > and < string > are placeholders are for the standard JSON

number and string datatypes. The order of items in the “data” subarray is

significant–they match the order of arguments to each constructor.
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RequestMessage = {
toP lace :: p,

fromPlace :: p,
reqNameMap :: p => Address,

reqTerm :: t,
reqEv :: [ bs ] }

ResponseMessage = {
respToP lace :: p,

respFromPlace :: p,
respEv :: [ bs ] }

Figure 7.6. Request and Response Message record structures.

7.2.3 Remote CVM Message Schemas

Request and Response Messages are record structures in Figure 7.6 that facil-

itate communication with CVMs. Their respective JSON object schemas are:

{

"toPlace": < number >,

"fromPlace": < number >,

"reqNameMap": < nameMap >,

"reqTerm": < term >,

"reqEv": < raw evidence >

}

{

"respToPlace": < number >,

"respFromPlace": < number >,

"respEv": < raw evidence >

}
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where fields that hold raw data (bs parameters in the grammar) are base64-

encoded JSON strings that hold binary values–hashes, nonces, signatures, etc:

< b64 string > := < string > (Base64 encoded)

< raw evidence > := [ < b64 string > ]

< nameMap > is a JSON object of the following form:

{pl1:addr1, pl2:addr2, ...}

where pl1, pl2, ... are JSON key strings that represent a Copland place identifier

(i.e. “1”, “2”, ...) and addr1, addr2, ... are JSON strings (< string >) that rep-

resent platform addresses. We leave address strings abstract in this specification,

but a common usage would be a string of the form ip:port.

7.3 Flexible Mechanisms Implementation

Now that we have introduced the software architecture of the Haskell AM and

how it integrates the core attestation components extracted from Coq, we can

move on to instantiate the Flexible Mechanisms patterns of attestation proposed

by Helble et. al. [27]. Each pattern is specified as one or more Copland phrases,

whose definitions and corresponding architecture diagrams are repeated below for

the sake of self-containment.

The primary remaining task to instantiate these patterns is to provide im-

plementations for primitive ASPs that are only described abstractly and labeled

by name in [27]. The core attestation components and surrounding Haskell AM

toolset are then su�cient to instantiate each of the attestation patterns in the

Flexible Mechanisms benchmark.
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7.3.1 Certificate Style (Simple)

The first pattern is called Certificate Style, and its general shape can be seen in

the diagram of Figure 7.7. Here an entity called the Relying Party (place P0) sends

an initial request containing a nonce n to the Attester (place P1). Upon receipt

of the request, the Attester collects some evidence and bundles the result with

the nonce to produce evidence(n), which it forwards to the Appraiser (place P2).

After evaluating the evidence, the Appraiser returns a certificate also bound to the

nonce n to the Attester, who concludes the protocol by relaying the certificate(n)

back to the Relying Party.

P2

Appraiser

P1

Attester

P0

Relying
Party

3:certificate(n)

1:n

4:certificate(n)

2:evidence(n)

Figure 7.7. Certificate-Style. Fig. 5 on pg. 29:15 of [27].

Although a certificate might be a more sophisticated operation, in its simplest

form it is a simple digital signature over the evidence. In that case, a Copland

phrase like the following is su�cient:

*P0,n: @P1[(attest P1 sys) ->

@P2[(appraise P2 sys) -> ! ]]

Here the digital signature primitive “!” serves as the certificate, and if we assume

place P2 is properly configured to handle CVM attestation requests, then we
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know it is equipped with such a signature capability. If all places involved are

configured properly, we can also trust them to invoke the specified services and

bundle evidence properly. What is left then is to instantiate the attest and appraise

ASP procedures at places P1 and P2, respectively. If we initially map both attest

and appraise to the default ASP server, the phrase runs as expected in the Haskell

AM, producing a top-level evidence bundle at place P0. While simple, this phrase

exercises CVM node configuration by spawning CVM instances at place P1 and

P2, interpreting @ with concrete socket-to-socket communication mechanisms, and

bundling of cryptographic evidence.

7.3.2 Certificate Style

A slightly more sophisticated variation on the Certificate Style pattern involves

replacing the digital signature with a custom certificate ASP procedure. The

Copland phrase for this is as follows:

*P0,n: @P1[(attest P1 sys) ->

@P2[(appraise P2 sys) ->

(certificate P2 sys) ]]

While this requires a small amount of extra configuration to stand-up the cer-

tificate ASP at place P0, the overall shape is unchanged. If we again instantiate

certificate with a dummy implementation, this phrase immediately runs success-

fully as before. However, our pipeline of ASPs has become interesting enough

that the semantics of primitive evidence values is now significant. Because the

semantics of the linear sequence operator! in Copland is “evidence-cumulative”,

the evidence produced by attest at place P1 feeds into appraise at P2, and likewise

from appraise into certificate.
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While more sophisticated implementations of ASPs support custom attestation

goals, they might also add complexity by breaking the abstraction of otherwise

opaque evidence blobs passed between them. To tame some of this complexity

we can instantiate the attest ASP such that it leverages the existing Copland

and CVM infrastructure. The main insight is to give attest its own CVM instance

capable of running any Copland-specified protocol to measure the target of interest

(presumably at place P1). This approach allows attest to be configured, perhaps

even dynamically, by a subset of the protocol participants. Because the CVM is

designed to execute arbitrary Copland phrases, this adds significant expressivity

to the Certificate Style pattern.

An important design decision for attest is how to acquire the Copland phrase

that runs within it. One option is for a subset of the protocol participants to

negotiate the phrase a-priori before the Relying Party sends the initial request.

In this case, the phrase can be added as a static parameter to attest before run-

time. Depending on privacy constraints of the involved participants the phrase

could be added either by the Relying Party as a part of the initial request (static

arguments to the attest and appraise ASPs), or configured locally by the Attester

and known only to the Relying Party by name. A second option is to allow the

first action within attest to be an independent negotiation between the Attester

and Appraiser domains on-demand. Both of the above strategies are supported

by the Haskell AM. Because negotiation is largely out of scope for the current

work, we leave the action of choosing a particular phrase within attest abstract as

the action choose phrase which potentially interacts with the IO environment. A

pseudocode rendering of the attest implementation appears in Figure 7.8.
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attest :: [BS] -> IO BS
attest e :=

t <- choose_phrase
e’ <- run_cvm (t, e)
return (encode (AttestResult t e’) )

Figure 7.8. Pseudocode for the attest ASP.

The type of attest reflects the main task of an ASP server implementation: take

a raw evidence sequence as input and produce a single binary value as output,

potentially interacting with external components via the IO monad. The return

value is encoded as a binary blob to be bundled by the CVM in the standard way,

and thus available for decoding in subsequent ASPs in the pipeline.

The AttestResult return type is a custom Haskell record datatype that encodes

the necessary metatdata to serve as glue between attestation and appraisal:

data AttestResult = AttestResult

{ term_ran :: Term,

ev_res :: RawEv } deriving (Show,Read,Generic)

The first field holds the Copland phrase dynamically selected and executed by

the Attester. The second is the new raw evidence sequence returned by the CVM

after executing that phrase.

Next we must instantiate the appraise ASP such that it can interpret the ev-

idence output by attest. Recall from Section 4.2 that the generalized appraisal

procedure has precisely that capability, but requires an expected evidence shape

in addition to the raw evidence. Using the evidence denotation function from

Section 3.3.1 we can derive the shape of evidence given the shape of the initial

evidence passed to attest and also the Copland phrase it selected to run. For

simplicity in this scenario, the Appraiser assumes the initial evidence provided
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to attest is always a nonce value with ID 0. The phrase t and the raw evidence

it produced can be extracted from the AttestResult structure generated by attest.

The pseudocode for appraise appears in Figure 7.9.

appraise :: [BS] -> IO BS
appraise e :=

[hd, ..., n] <- peel_bs e
(AttestResult t attRes) <- decode hd
evidence_type = eval (t, P1, N 0)
nonceMap = [(0,n)]
appRes :: EvidenceC = gen_appraise (evidence_type, attRes) nonceMap
return (encode appRes)

Figure 7.9. Pseudocode for the appraise ASP.

Upon receiving this raw evidence from attest at P1, appraise at P2 must first

peel o↵ and decode the AttestResult blob. It can then configure and run the

generalized appraisal procedure, resulting in a Typed Concrete Evidence result

that summarizes the appraisal.

Notice here that we must configure the generalized appraisal procedure with

a mapping that includes the nonce value passed initially as input to attestation.

This is required to ensure to the Relying Party that the attestation is su�ciently

fresh. We also assume the Appraiser knows the precise location of the nonce

value within the raw evidence (at the last position in the list). The appraise

ASP concludes by encoding the appraised evidence structure as a raw binary

blob. Figure 7.10 shows how evidence flows through the attest, appraise, and

certificate ASPs. Notice how the overall evidence structure extends according to

the CVM bundling semantics, but the semantic content of each ASP call encoded

into individual evidence cells.
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attestn
P1

n(t, attResP1)

attResP1 := run_cvm (t, P1, n)

appraise

P2

n(t, attResP1)gen_appraise ( !(t, P1, N0), attResP1)

cert (P1, n)certificate

P0

. . . . . . . . .

P1P0

Figure 7.10. Diagram of the attest ! appraise ! certificate
pipeline, ASP evidence encoded as blobs within Copland raw evidence
sequence.

The final ASP in the pipeline, certificate, must examine the appraisal result

and provide some sort of endorsement of its contents for review by the relying

party. As discussed previously, this endorsement might be a simple digital signa-

ture over the evidence blob. However, if the certifier is aware of the Copland-based

semantics of the prior appraisal result (encoded as Type Concrete Evidence), it

becomes feasible to walk that structure and make a more sophisticated judgment

by considering sub-appraisals. Said another way, a convenient way to implement

our certificate authority is to support a go/no-go decision based on individual

appraisal results embedded within the ConcreteEvidence structure. Even with

this general strategy in place, many interesting decisions remain about how to

walk the structure, which pieces contribute to a certification decision, and how
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to report that decision back to the Relying Party. Nonetheless, the predictable

semantics of Copland terms and evidence, along with the o↵-the-shelf attestation

and appraisal procedures, provide a solid foundation and rapid testing-ground for

such custom certificates.

certificate :: [BS] -> IO BS
certificate e :=

[hd, ..., n] <- peel_bs e
(ec :: EvidenceC) <- decode hd
b = certWalk_EvidenceC ec
bs = bool_to_bs b
return (sign (bs, n, P1))

Figure 7.11. Pseudocode for the certificate ASP.

The pseudocode for the certificate ASP implementation appears in Figure 7.11.

This ASP starts similarly to appraise by peeling o↵ the relevant data items from

the raw evidence sequence. This time, the front evidence cell is the EvidenceC

structure produced by appraisal. With this value in hand and decoded, we invoke

the helper function certWalk EvidenceC which implements a depth-first walk over

the EvidenceC structure and returns a boolean result. There are many ways to

implement such a walk, and in fact this provides a convenient interface to configure

certificates with di↵erent levels of scrutiny. For concreteness in this prototype, we

implement a simple walker that checks that all appraisal results can be interpreted

as “passing”. For this particular appraisal, this is e↵ectively an accumulation of

boolean checks. After computing this certification result, we can encode it to

binary, then sign a certificate package and return it. While there are more options

for what is included in this package, here we choose to include the encoded boolean

result, the initial nonce value, and the place whose attestation we are endorsing
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(note that the place ID could be derived from the EvidenceC structure, or hard-

coded if this ASP is configured statically).

7.3.3 ASP Bundling Semantics

Implementing the Certificate Style pattern raised an issue related to the bundling

semantics of ASPs performed within the CVM. In the Copland reference semantics

evidence is treated abstractly, and is closer in spirit to an evidence type. In par-

ticular, it is left underspecified how an ASP routine consumes its input evidence,

and how it bundles its result evidence with the existing raw evidence sequence.

While the evidence type semantics tags each ASP to record that it potentially

incorporates its input evidence, it leaves the details of this to the semantics of

the individual ASP, and correspondingly its interpretation to the complimentary

appraisal procedure for that ASP. While this provides greater flexibility for speci-

fying custom attestation scenarios, it creates a potential for ambiguity in the raw

evidence sequence derived from the CVM bundling semantics, and correspond-

ingly the generalized appraisal procedure.

For simplicity, the CVM semantics thus far appends all ASP results to the front

of the raw evidence sequence. While this is fine for some ASPs that merely gather

evidence, it doesn’t always make sense for other ASPs that might summarize or

cryptographically transform their input evidence. This is the case for the appraise

and certificate ASPs of the Certificate Style pattern. There is also the issue of

privacy: it may be the case that the Attester platform wishes to keep the details

of its measurements and their evidence results confidential and inaccessible by the

Relying Party. Notice in Figure 7.10 that under the existing CVM semantics, the

final evidence value produced by the certificate ASP includes evidence cells for

108



results of both the attest and appraise ASPs. Further, by the semantics of the @

phrase, this evidence implicitly bubbles back through place P1 and P0 (Attester,

Relying Party) as each place finishes its work. To protect its confidentiality, the

Attester platform may wish to negotiate that its results only be visible to the

trusted Appraiser.

This scenario uncovers a need for each ASP to be configurable by how it con-

sumes and outputs evidence. In some cases it should be destructive: consume

the input evidence and replace it completely in the output. In other situations it

should append the newly-gathered evidence to existing evidence. Both of these

bundling strategies are desirable at di↵erent moments in the certificate style pat-

tern: the attest ASP must leave its input nonce untouched, while the certificate

ASP should consume and replace its entire input to keep both the attestation

protocol and its evidence result confidential.

To address this shortcoming of the existing CVM bundling semantics, we pro-

pose a minor extension to Copland that allows distinguishing between destructive

and non-destructive ASP terms. Making this distinction first class in the lan-

guage is vital to the generalized appraisal procedure that depends on the precise

structure of raw evidence. This change should only add a minor additional proof

burden: primitives already exist that destroy and preserve input evidence (HSH

and SIG, respectively). However we leave the details of this update to the language

and CVM proofs for future work.

7.3.4 Cached Certificate Style

The Cached Certificate Style is a slight variation on the Certificate Style that

adds two new ASPs called store and retrieve that act on a shared evidence cache
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at place P1. A diagram of this pattern appears in Figure 7.12, and it can be

described in Copland as follows:

*P1:(attest P1 sys) ->

@P2[(appraise P2 sys) -> (certificate P2 sys)] ->

(store P1 cache)

*P0,n:@P1[((retrieve P1 cache) -<+ _) -> !]

Here we see the pattern di↵ers from normal Certificate Style in that it has two

top-level places that orchestrate the execution of two separate Copland phrases.

The first phrase run by P1 starts with the same attest, appraise, certificate pipeline

from before. But instead of simply letting the chain of evidence bubble back to

the Relying Party, here P1 uses the store ASP to save the certificate evidence in

a local cache. The second phrase is a request from the Relying Party, along with

a nonce for freshness, for P1 to retrieve the same certificate from its cache and

endorse it with a signature.

With the attest, appraise, certificate pipeline of ASPs already implemented

from the previous pattern, the Haskell AM already has nearly all it needs to

run this new pattern. The two things that remain are instantiations for the

store and cache ASPs, and also a means to run (and configure) two top-level

phrases simultaneously. To implement the store and retrieve ASPs, we consolidate

them into a single ASP called cache and allow it to accept the store and retrieve

commands as distinct arguments. This strategy simplifies configuration because

we only need to instantiate a single mutable memory cell within the cache ASP

server that holds the cached raw evidence sequence. Because the store and retrieve

commands may access the same cache server simultaneously, we implement the
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cache memory cell as a Haskell TVar from its Software Transactional Memory

library [65]. This ensures atomic access to its contents, and also supports retrying

access when for example the retrieve command occurs before the cache has been

populated.

With the cache ASP configured, what remains is configuring and running the

two phrases simultaneously. However the assumption there was that only one

top-level Copland phrase needed support. Running two phrases is accomplished

by instantiating two separate AM Monad instances, and configuring services that

result from taking the union of parameters from both of the Copland phrases in-

volved. The relevant parameters for configuring services are the places involved

(to configure CVM instances) and the ASPs involved. Once the union of these

places and ASPs are configured and running, running the above phrases as sep-

arate threads (where retrieve waits for store to populate the cache) results in a

successful run of this pattern.

P2

Appraiser

P1

Attester

P0

Relying
Party

2:certificate

3:n

4:certificate(n)

1:evidence

Figure 7.12. Cached Certificate-Style. Fig 6 on pg. 29:16 of [27].
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7.3.5 Parallel Mutual Attestation

The Parallel Mutual Attestation pattern is depicted in Figure 7.14, with cor-

responding Copland phrase in Figure 7.13.

*P0,n0: @P1[(attest01 P1 sys)] ->
@P2[(appraise01 P2 sys)]

*P1,n1: @P0[(attest10 P0 sys)] ->
@P2[(appraise10 P2 sys)]

Figure 7.13. Copland phrase for Parallel Mutual Attestation.

P2

Appraiser

P0 P1

request01(n0)

evidence01(n0)

request10(n1)

evidence10(n1)

result01(n0)
evidence01(n0)

result10(n1)
evidence10(n1)

Figure 7.14. Parallel mutual attestation. Fig 8 on pg. 29:18 of [27].

The aim of participants P0 and P1 is to acquire evidence about the trustworthiness

of one another, then have a trusted third party Appraiser at place P2 appraise

that evidence. The Flexible Mechanisms implemented so far provide a su�cient

toolbox to configure and run this scenario almost immediately. The attest and

appraise ASPs are the same as in previous patterns, and running two phrases

simultaneously uses the same strategy as for the Cached Certificate Style. The
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ease with which our existing core attestation components and supporting libraries

made this unique scenario executable speaks to their general-purpose utility.

7.3.6 Layered Background Check

The final Flexible Mechanisms pattern is the Layered Background Check de-

picted in Figure 7.16, with corresponding Copland phrase in Figure 7.15.

*P0,n: @P1[((attest P1 sys) ->
(attest P3 att) ->

(attest P4 att)
+~+
(@P3[(attest P3 sys)]

+~+
@P4[(attest P4 sys)])) ->

@P2[(appraise P2 it) -> !]]

Figure 7.15. Copland phrase for Layered Background Check.

P0

Relying
Party

P2

Appraiser

P1

Attester

P3

Attester
P4

Attester

3:bundle(n)

0:request(n)

4:bundle(n)5:result(n)

1:request3(n)

1:request4(n)

2:evidence3(n)

2:evidence4(n)

Figure 7.16. Layered background check. Fig 9 on pg. 29:19 of [27].
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This scenario involves one top-level client, the Relying Party at place P0. The

initial request bound to a nonce n is sent to place P1, which then orchestrates

the remaining local attestations and requests. P1 first performs a collection of

direct and indirect attestations simultaneously. The set of direct attestations are

of itself, P3, and P4, in that order. The indirect measurements are requests to P3

and P4 to attest themselves, and those requests are free to occur in any order.

After all of these attestations complete, P1 sends a final request to the Appraiser

at P2 to perform the appraise ASP and sign the result of appraisal.

By the time evidence arrives at P2 for appraisal, the evidence bundle is quite

complex. Part of this complexity comes from the nested sub-attestations encoded

as results of the attest ASPs at the various places. But even the top-level evidence

sequence itself has a non-trivial amount of structure. Luckily we can leverage the

evidence semantics of Copland to help here. However the pipeline of ASPs in

this phrase di↵ers from previous patterns where appraise only followed a single

attest. In this case we have to provide appraise with more structural information

to interpret the more sophisticated evidence type. To accomplish this we configure

the top-level appraise ASP statically with the prefix of the overall phrase before

appraisal, as in Figure 7.17. To configure appraise we chose to encode the above

phrase prefix into a String parameter of the ASP argument list. This kept the

implementation of the appraise ASP as general as possible, and allowed static

configuration before attestation launch time.

The final wrinkle here is the generalized appraisal procedure still needs to

know how to appraise each individual attest ASP. Recall that the procedure will

call checkASP for each raw evidence result of attest. But because attest constructs

and encodes an AttestResult, we can implement appraise such that it decodes and
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@P1[((attest P1 sys) ->
(attest P3 att) ->

(attest P4 att)
+~+
(@P3[(attest P3 sys)]

+~+
@P4[(attest P4 sys)]))]

Figure 7.17. Non-appraisal prefix of the Copland phrase for the
Layered Background Check pattern.

interprets that structure, extracts the phrase selected by attest, and use it to com-

pute the expected evidence shape for that sub-attestation as input to generalized

appraisal. Notice this is a similar appraisal strategy as in the Certificate Style pat-

tern above, but more principled. Before we relied on the fact that a single attest

ASP preceded appraise, so it was easy to guess where the appropriate AttestResult

structure would be. The new strategy supports handling arbitrary embedding of

attest ASP results within the overall evidence structure.
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Chapter 8

Conclusion and Future Work

In this work we have presented a collection of core components that aid in

the design, execution, and analysis of layered attestation protocols. The Cop-

land Virtual Machine provides a fine-grained execution and bundling semantics

for Copland attestations that is formally verified to respect the Copland reference

semantics for events and evidence shapes. A dual generalized appraisal procedure

unbundles and checks evidence integrity, and is formally verified to achieve ap-

praisal coverage – everything attested is appraised with su�cient cryptographic

strength. We lift the formal properties of these artifacts into the Copland Verifi-

cation Architecture to discharge assumptions about honest Copland participants

and compose with an analysis of protocol strength in the presence of a capable

adversary. This end-to-end workflow is exercised to aid in the iterative design and

analysis of a UAV demonstration platform instrumented with attestation. The

analysis incorporates custom first-order encodings of the Security Architecture

and measurement dependencies on the ground station to justify mitigation of at-

tack models. Finally we instantiate the diverse Flexible Mechanisms benchmark

of attestation patterns within the Haskell AM prototype. Implementing these pat-
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terns required concrete instantiation of primitive attestation services and careful

integration with the formal artifacts generated via code synthesis.

Formal verification was vital to confirm key properties of the intricate exe-

cution and bundling semantics of the CVM and appraisal components, including

precise parameters passed to external services. Rigid specifications of correctness

uncovered simple but subtle bugs like parameter swapping early in implementa-

tion of the CVM. Later on it highlighted less obvious corner cases in the appraisal

procedure where specific evidence structures eluded appraisal. The interplay of

verification and system prototyping brought insights that make the attestation

mechanisms more robust and inform the design of future systems. Refining the

reference semantics to a concrete Haskell implementation exposed complexity at

each stage, including the subtle di↵erences in evidence bundling among primitive

ASP terms, and strategies for parallel execution of Copland phrases. Implement-

ing the Flexible Mechanisms patterns uncovered complexity of data flow in ASP

evidence pipelines, highlighting the need for constrained disclosure of evidence to

certain ASPs. The prototyping e↵ort forced careful integration of the core formal

components with non-formal services in the surrounding Haskell environment.

The contributions of this work provide a system designer with a set of building

blocks that aid in a principled understanding of where risk lies on a system. Rather

than a once-and-for-all theorem that implies absolute security, formal properties of

these attestation components add rigor and inform the context of a larger system-

level security argument. Ongoing work that places the CVM and appraisal com-

ponents within a larger attestation stack appears in Figure 8.1. Above protocol

execution is a negotiation phase that selects a protocol amenable to all partic-

ipants [19]. Below is a synthesis phase that extracts the CVM and its security
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architecture to a CakeML program [4, 31] and seL4 component specification that

both enjoy formal semantics down to metal. Viewed another way, these phases

will support automatic synthesis of three distinct but related artifacts: protocol,

architecture, and code. The core components defined and formally verified in this

work serve as the fundamental link in this end-to-end attestation stack.

R

hP i

Protocol

CVM

CakeML/seL4

Binary Evidence

Evidence

Evidence

Evidence Shape

hEi

(E,�,>,?)Request Result

Negotiation

Selection

copland compile

Synthesis

CakeML Compile

run cvm

Abstraction

Appraisal

Figure 8.1. Verification stack showing verification dependencies and
execution path. Solid lines represent implementations while dashed
lines represent mathematical definitions.
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Chapter 9

Related Work

Remote Attestation has its roots in the related fields of trusted computing,

system-level security, and protocol analysis. There are also a number of academic

and industrial tools that leverage remote attestation to gain varying levels of trust

in systems. With that in mind, the goal of the current work is not to replace these

approaches and tools. Rather, we aim to develop a framework that is general

enough to orchestrate these existing tools as specialist services, then combine

and report their evidence in a principled way. This will support increasingly

diverse attestation scenarios that a single tool/approach cannot support on its

own. These new scenarios may involve multiple participants, each with diverse

system architectures, cryptographic, and measurement capabilities.

Although our framework is designed to bundle existing attestation services, it

is also an attestation service itself. Therefore, it incorporates design principles

known to be sound from prior attestation systems. In particular, the designs of

the Copland language and CVM attestation execution semantics are careful to

support properties like bottom-up measurement [60], robust evidence bundling

[59], constrained disclosure and trustworthy mechanism [12].
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9.1 Models of Security

Our remote attestation framework is designed with the assumption that at-

tackers can and will corrupt systems. In their early analysis of cryptographic com-

munication protocols, Dolev and Yao present a precise model of an adversary that

can eavesdrop on all messages exchanged [15]. They make very few assumptions

about the adversary; its only limitations are cryptographic laws of the messages

involved. Although attacker capabilities are not the primary focus of this work,

we do design our framework with a powerful adversary in mind that can view

all messages exchanged between protocol participants. Another influence on our

design is the notion that security is not absolute, and that systems will inevitably

fail [40]. It is therefore important that our remote attestation framework provides

ways to incrementally constrain the adversary with e↵ective measurement strate-

gies, making their attempts to corrupt the system and go undetected as di�cult

as possible. From this perspective, the primary utility of our formally verified core

attestation components is thus their isolation of risk on layered systems rather

than guarantees of absolute security.

9.2 Formally Verified System-level components

The aggregation of high-assurance components creates exciting opportunities

for building system-level security arguments. Below we list a number of core

components to system-level security have come to maturity in recent years with the

help of formal verification and mechanized proof. However, the security properties

gained from these verified implementations are of little use if an adversary corrupts

layers below them or corrupts adjacent components that they rely on for successful
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execution. This highlights the importance of our remote attestation infrastructure,

not only to attest the authenticity of components like these on a system, but to

build the attestation infrastructure itself.

• seL4 [33]: seL4 is an operating system kernel with strong formal guarantees

of component isolation and access control. High-level security properties

like non-interference are specified and verified in HOL4, then refined to an

e�cient, semantically-equivalent C implementation. Isolation mechanisms

like seL4 are critical for layered attestation systems to protect measurement

components from their potentially untrusted targets.

• Compcert [37]: Compcert is a C compiler with formal guarantees in Coq of

semantics-preservation down to various mainstream machine code targets.

Attestation components like cryptographic and measurement implementa-

tions are written in C due to their low level nature. Compcert ensures bugs

are not introduced into these critical components during compilation.

• CakeML [36]: CakeML is an ML-like language with a compiler to machine

code formally verified in HOL4. Ongoing work [4,31] will synthesize CakeML

implementations of attestation components from their Coq specifications.

• VellVM [71]: VellVM is a framework for reasoning in Coq about programs

expressed in LLVM’s intermediate representation. Its uses include harden-

ing C programs against spatial memory safety violations, along with other

formally verified transformations with negligible performance impact.

• FSCQ [9]: FSCQ is a formally certified crash-proof file system implemented

and verified in Coq. Its proofs ensure a file system will recover its contents

correctly under arbitrary sequences of system crashes and reboots.
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• Kami [10]: Kami is a framework in Coq for implementing, specifying, ver-

ifying Bluespec-style hardware components. It supports modular hardware

verification and synthesis of high-level designs into low-level circuits.

• CertiKOS [25]: CertiKOS is a certified secure OS Kernel specified and veri-

fied in Coq. CertiKOS is a general-purpose OS kernel with concurrent fea-

tures like fine-grained locking that achieves functional correctness of system

calls akin to seL4, but focuses less on high-level security properties.

• SELinux [39]: SELinux is a mandatory access control policy enforcement

architecture for Linux systems. While microkernels like seL4 provide sep-

aration guarantees for components at the system-level, SELinux supports

more fine-grained policies for application-level interactions within Linux.

• F* [64]: F* is a functional language in the ML family that has support

for dependent types in the form of refinement type annotations on code,

alongside push-button automation via linkage to SMT solvers. Its support

for monadic e↵ects, systems language embeddings (Low*), and synthesis

capabilities make it an accessible environment for low-level formal develop-

ments. Its verified implementations include a growing list of fundamental

cryptographic and distributed systems algorithms.

• Cryptol [7]: Cryptol is a domain-specific language and framework for spec-

ifying cryptographic algorithms. While verified compilers guarantee the se-

mantics of cryptographic implementations are preserved to metal, Cryptol

ensures functional correctness of the algorithms themselves with respect to

mathematical specifications of cryptographic strength.
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9.3 Trusted Platform Module(TPM)

The Trusted Platform Module (TPM) [67] is a cryptographic co-processor

designed by the Trusted Computing Group (TCG) to reliably store and report

evidence of system integrity. Although we don’t rely on the TPM explicitly in

this work, our attestation framework was designed to be configurable with a hard-

ware root of trust that has the properties similar to a TPM. It is a passive device

with access-controlled storage locations called Platform Configuration Registers

(PCRs) that are populated with hash measurements. The only way to update

a PCR is by extending its previous hash value, and nonresettable PCRs ensure

that a complete history of measurements are preserved, starting from the earliest

code that executes on a system. Each TPM provides a unique identity by means

of a private Endorsement Key (EK) which is burned into the chip during manu-

facturing. The EK derives and protects another key called the Storage Root Key

(SRK), which in turn can derive a collection of keys used to encrypt and store data

outside of the TPM, only to be decrypted by way of the TPM. The EK can also

generate Attestation Keys(AKs) that serve as aliases for the EK when reporting

the contents of its PCRs in a TPM Quote. Signing quotes with the AK allows a

platform to prove it has a manufacturer-approved TPM, but also preserve some

of its anonymity by using multiple AKs. TPMs can serve as a hardware root of

trust for many important remote attestation scenarios. However, care must still

be taken to avoid using them in unsound ways [60].
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9.4 Process Calculi

A distinguishing feature of our Remote Attestation framework is that it is

language-based. In particular, we allow specification of attestation patterns as

language terms called phrases in the Copland framework. The syntax of Copland

phrases is reminiscent of earlier process calculi like Milner’s Calculus of Commu-

nicating Systems CCS [45] and Hoare’s Communicating Sequential Processes [29]

in its ability to specify sequential and parallel composition of subterms. Paral-

lel subterms in Copland do not communicate implicitly like they might in these

process calculi. Instead, Copland uses an @ term to specify an explicit communi-

cation channel, specialized for sending attestation requests and receiving evidence

responses. The notion of explicit handling of channels first appeared in a de-

scendant of CCS called the pi-calculus [46]. An even more recent extension of

the pi-calculus, called the spi-calculus [1], adds cryptographic primitives to the

pi-calculus. This is similar to primitive terms in Copland like SIG and HSH that

perform cryptographic operations over accumulated evidence.

9.5 Remote Attestation Frameworks

9.5.1 IMA

IMA(Integrity Measurement Architecture) [62] is a tool that checks the in-

tegrity of all executable content loaded onto a Linux system. It uses a “measure-

before-execute” strategy, placing hashes of all executables into TPM (Trusted

Platform Module) protected storage before loading and executing them. A re-

mote system can then request a composite TPM quote of these hash values to

asses the integrity of the target system. IMA is a baseline system measurement to
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detect attacks such as OS rootkits that attempt to initialize a system in a malicious

state. In this sense, it can be viewed as a “boot-time” or “load-time” measure-

ment that guarantees the system starts in some expected state immediately after

the code is loaded. It also provides modest run-time guarantees by instrumenting

the Linux kernel to measure any executables loaded after boot. IMA supports a

form of layered attestation, albeit a fixed and shallow one: the BIOS measures the

integrity of the core kernel code, then the instrumented kernel code measures the

integrity of changes to itself (modules loaded, user level processes started), and

measures executable code loaded into its processes at run-time using file mmap

LSM hooks to “induce a measurement on any file before it is mapped executable

into virtual memory” [62].

The IMA measurement strategy and the corresponding system architecture

must be fixed prior to fielding a system. While the measurement list stored in-

kernel records and reports the order executable components start, it does not

enforce, or allow the user to prescribe, the order in which components start af-

ter boot. In our attestation framework, we could invoke IMA to get a quote as

a baseline measurement of the system, ensuring the proper components at least

started in an expected state (correct executable loaded, proper configuration files

used). A quote from [62] that summarizes the utility of IMA is as follows: “...our

architecture ensures that the breadth of the system is measured ... but the depth

of measurement ... is not complete, but it is extensible, such that further mea-

surements to increase confidence in integrity are possible”.

PRIMA (Policy-Reduced IMA) [30] is an extension to IMA that is less coarse-

grained and leverages access control policies on the target platform to eliminate

unnecessary measurements and allows untrusted code to run alongside trusted
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code on a system. Their approach uses SELinux MAC policies to enforce infor-

mation flow between processes, then uses these policies to inform measurement

decisions during attestation. This limits re-measurement, and reduces false pos-

itives because a failed integrity check of a non-dependency of the target will not

a↵ect its integrity. PRIMA can be viewed as an optimization of IMA, and still

provides a fixed, baseline measurement of Linux systems.

9.5.2 DR@FT

DR@FT (Dynamic Remote Attestation Framework and Tactics) [70] is similar

to PRIMA, in that it uses access control policies to optimize measurement. In

addition, they focus on the most recent changes to the system. They also introduce

a graph-based integrity violation analysis that ranks policy violations and give an

appraiser quantitative guidance to determine the severity of violations and how

e�ciently they might be resolved.

9.5.3 Bind

BIND [63] provides a more fine-grained notion of attestation: it measures,

starts, and protects individual components, rather than performing system-wide

measurement. It also incorporates attestation of input data so that an attestation

can produce a chain of evidence about how data is transformed, perhaps by multi-

ple components on a system. This transitive chain of data transformations can be

checked by a single signature verification. BIND makes appraisal easier since it is

not sensitive to small changes of configuration on the target when those changes

are not relevant to the code of interest. It also moves beyond the load-time guar-

antees of traditional TCG approaches like IMA by tracking and appraising data
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transformed by processes at run-time.

9.5.4 Policy Driven Remote Attestation

The Policy Driven Remote Attestation framework [24] leverages data access

policies to inform the requirements of remote attestation. The attestation process

itself is not new: they invoke IMA as-is. However, they introduce an authorization

logic and an accompanying architecture that informs the parameters of attesta-

tion. An interesting part of their architecture is the Attestation Authority that

manages a database of measurement values. This isolates to a dedicated compo-

nent the complex management and often-changing “golden hashes” of di↵erent

software versions and patches.

9.5.5 Copilot

Copilot [49] is a kernel-integrity monitor that extends beyond boot and load-

time, supporting arbitrary checks on main memory at run-time. While this is

coarse-grained, it is also flexible, and at the time of writing detected 12 real-

world rootkit attacks on Linux. It aims to detect the most sophisticated types

of rootkit attacks that modify the OS kernel on an already-compromised host.

Their prototype checks MD5 hashes of the kernel’s code, loaded kernel modules,

and some of the kernel’s critical data structures. Since their implementation is

PCI-based, their view of the host is limited to main memory (they are unable to

pause the host’s CPU execution or examine its registers). This limits the precludes

the guarantee that no malicious code was executed, but does limit the attacker

options to “timing attacks and extremely advanced relocation attacks” [49].
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9.5.6 TrustLite and TyTan

TrustLite [35] is a hardware security architecture that supports remote at-

testation on embedded devices. They modify MPU and CPU execution engine

hardware to provide isolation of software components on a system. An advantage

of their architecture is that it is general enough to be instantiated on di↵erent op-

erating systems and software stacks. The EA-MPU (Execution-AWARE MPU)

and secure exception engine protects against untrusted exception handlers, and

their Secure Loader configures their architecture and can serve as a root of trust

in remote attestation scenarios. TyTan [6] builds on the TrustLite architecture,

extending it to provide execution-time guarantees for applications with real-time

requirements.

9.6 Analysis of Remote Attestation

9.6.1 Principles of Remote Attestation

In [12], Coker et. al define a list of design principles that should guide the

development of attestation systems. These principles play a central role in the

design of Copland, and also in the attestation manager framework presented in

this work. The five principles are: fresh information, comprehensive informa-

tion, constrained disclosure, semantic explicitness, and trustworthy mechanism.

Fresh information means that measurements should reflect the current state of

the running target as much as possible. In our framework, our explicit nonce

generation and management in the AM Monad is towards this goal of freshness.

Comprehensive information means that measurement tools on a target system

should be capable of delivering a comprehensive description of system state to a
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remote appraiser. This is handled in Copland as the ability to specify arbitrary

system measurements as Attestation Service Providers, and in the CVM Monad

that faithfully carries out the entire list of specified measurements.

The next principle, constrained disclosure, is often at odds with complete in-

formation. It says that the target of attestation has the right to refuse to disclose

certain aspects of its configuration to actors it does not trust with this information.

While we do not address this principle explicitly in our attestation framework, we

rather assume the existence of a policy and negotiation phase responsible for re-

jecting Copland phrases that violate privacy concerns of the target. Semantic

explicitness says that the content of attestation should have a well-defined, logical

form such that an appraiser can compose multiple attestations of the target to

make a security decision. This principle is the single-most driving force behind

the Copland e↵ort. Copland phrases make explicit the appraiser’s goals during

attestation, and Copland evidence ensures the results are bundled in a way that

is sound and predictable. Finally, trustworthy mechanism, states that attestation

evidence should be accompanied by meta-evidence indicating the trustworthiness

of the attestation mechanisms themselves. The primary goal of the current work

is to ensure this principle by formally verifying key components of an attestation

infrastructure. An appraiser can then rely on knowledge of the specific attestation

services invoked, and know that these services were coordinated faithfully.

9.6.2 Confining adversary actions via measurement

There is a pervasive notion in the attestation literature that a “bottom-up”

measurement strategy, where chains of measurements start with a hardware root

and build outward, is the most e↵ective strategy to gain trust in systems. Rowe’s
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work [59] is the first to rigorously formalize this intuition by modeling arbitrary

combinations of system measurement events alongside adversary actions that cor-

rupt and repair system components. The model is a graphical representation

that supports reasoning about attestation strategies to measure layered systems.

The main result of the paper confirms the intuition that bottom-up measurement

forces the adversary to perform a “recent or deep” attack on the system to achieve

its goals and go undetected. These types of attacks place more burden on the at-

tacker by requiring they corrupt a deeper, more protected component or provide a

smaller time window for the attacker to operate. The graphical model of measure-

ment and adversary events is very much akin to Event Systems in the Copland

framework. One of the goals of Copland is to leverage this analysis to rank and

select Copland phrases that would properly constrain the adversary. The goal of

the current work is to ensure that measurement strategies specified in Copland are

faithfully executed by the attestation manager, ensuring the graphical analysis on

Event Systems remains sound.

9.6.3 Bundling evidence for layered attestation

Since an appraiser must make a trust decision based solely on the evidence

it receives from a remote system, the evidence must be bundled in a way that

implies properties of how it was collected. Rowe’s work that explores bundling

strategies for layered attestation [60] compliments his work of confining adversary

actions [59] by incorporating a novel theory of evidence structures for layered

measurement systems. To accompany the formal model of system events from the

accompanying work [59], he adds measurement storage and reporting primitives

based on capabilities of the TPM, including PCR extension and quoting. This
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supports proving the e�cacy of di↵erent bundling strategies based on how well

they imply proper measurement orderings to constrain the adversary.

After demonstrating some common pitfalls in bundling strategies, he proposes

a particular strategy that gives measurement components at each layer exclusive

access to their own PCR, but also incorporates evidence from lower layers into

higher layers. He then uses his theoretical framework to prove that evidence

from this strategy forces a recent or deep corruption from an adversary. Although

there is no formal connection from this work to the Copland framework, one could

imagine prescribing a bundling strategy as a carefully crafted Copland phrase that

interacted with a TPM (or something like a TPM). As it relates to the work in

this proposal, a formally verified attestation manager can be shown to perform

measurements in a prescribed sequence, somewhat eliminating the need to prove

this ordering by the structure of evidence alone. However, there may be portions of

an attestation scenario where an attestation manager cannot collect the evidence

directly (like early boot), and where properly bundled evidence is critical. This

work lays a theoretical foundation for further exploration of this trade-o↵: balance

between analysis of the evidence structure and trust of the evidence collection

process.

9.6.4 A Minimalist Approach to Remote Attestation

In work that derives a set of minimal properties necessary for remote attes-

tation [17], the authors begin with a logical description of the security of remote

attestation protocols as a game between a appraiser and attester (the authors use

the equivalent terms “challenger” and “prover” to mean appraiser and attester).

A system is secure if there is a negligible probability of a compromised prover
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producing a claim accepted by the challenger as valid. They follow with some

assumptions about the entities involved in attestation. First, that the prover is

a low-end embedded device with a single thread of control and limited resources.

They make few assumptions about the challenger and the adversary, except that

the adversary cannot break axioms imposed by hardware like writing to ROM.

Next, they derive a set of properties they claim are necessary and su�cient to

achieve the security goals under their assumptions. These include exclusive ac-

cess to the attestation key K, no leaks of K, and immutability, uninterruptibility,

and controlled invocation of the main attestation code, such that it must only be

“invoked from its intended entry point” [17] . They claim, but do not prove, that

those five properties imply security of attestation as they define it. They also

claim, but do not describe in detail, how removal of any one of these properties

results in a failure of their attestation goals. The paper ends with a brief de-

scription of features that would satisfy the five properties on a concrete embedded

system. Although lacking some specificity, the paper presents a well thought out

and organized collection of properties that remote attestation on an embedded

platform should reasonably follow.

9.6.5 Negotiation of Attestation Protocols

Prior to execution of an attestation protocol, the involved parties must agree

on how they will interact and what information they are willing to share. To-

ward this goal, Kline [34] proposes a multi-stage communication protocol where

the participants attempt to arrive at an attestation protocol amenable to all.

The negotiation process is formally specified and verified in Coq with respect to

properties like deadlock-freedom and privacy of the involved parties. Sessions are
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limited to two participants at a time, and the attestation protocol being derived

is a custom collection of measurements desired by each participant of the other.

In recent work, Fritz [19] presents a strategy for protocol selection that informs

negotiation of Copland-based protocols. This strategy leverages dependent types

in Coq and simplified versions of Copland and its evidence structure to gener-

ate protocols that meet local privacy policies of individual participants. Ongoing

work [18] will extend negotiation to the full Copland language and link it to the

formal semantics of attestation and appraisal components presented in this work.

9.7 Formal Verification of Remote Attestation

9.7.1 HYDRA

HYDRA [16] is a design and implementation of a hybrid hardware/software

remote attestation platform built upon the formally verified seL4 microkernel.

The authors claim that it is the first design to build upon formally verified soft-

ware components to achieve the goals laid out in a subset of their author’s prior

work [17]. They leverage seL4 [33] guarantees of memory isolation and access

control to protect key components of the attestation infrastructure including the

attestation key and the attestation process. They assume a fixed architecture,

with one main attestation process called “PR Att” that is responsible for start-

ing all other userspace processes, performs all measurements, and has exclusive

access to the symmetric signing key K. PR Att listens for requests from a remote

appraiser that indicate the process of interest, and the memory range within that

process to measure. Copland phrases, in contrast, were designed so that many

distinct measurers could cooperate to jointly measure a target, perhaps with mea-

surement agents at di↵erent layers in the architecture. Although their minimal
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architecture seems to support less exotic attestation scenarios, it allows them to

build a convincing security argument. They achieve many security goals we aim

for in our infrastructure including key isolation, attestation process protected from

untrusted components, trusted boot chain, and measurement freshness. Similar

to their design, the security of our attestation manager depends critically on ac-

cess control properties like those provided by seL4 to protect the core attestation

components.

9.7.2 ERASMUS

ERASMUS (E�cient Remote Attestation via Self-Measurement for Unattended

Settings) [8] uses HYDRA [16] as the base security architecture, but adds sup-

port for “self-measurement” to account for potentially expensive “on-demand”

requests in traditional attestation scenarios that may drain critical resources on

real-time devices. Self-measurement allows the target to periodically record its

own software state, which may be cached and collected by a potentially untrusted

verifier. They evaluate ERASMUS using a novel metric called Quality of Attes-

tation (QOA) that is a combination of how a target is attested, how often its

state is measured, and how often these measurements are verified. Caching of

measurements is one use-case the Copland framework was envisioned to support,

so ideas from ERASMUS may prove useful in future work when we experiment

with caching strategies.

9.7.3 VRASED

VRASED (Verifiable Remote Attestation for Simple Embedded Devices) [47] is

a formally verified remote attestation scheme for low-end embedded devices. The
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authors claim it is the first such RA scheme, and the first formal verification “of a

HW/SW co-design implementation of any security service”. They specify end-to-

end RA security and soundness properties in LTL (Linear Temporal Logic), then

prove these properties by decomposing verification tasks to hardware and software

submodules. The hardware components are specified in Verilog, then automat-

ically translated to a model checker using the Verilog2SMV tool to check their

LTL properties. For the software components, they rely on the formally verified

cryptographic library HACL*. To incorporate the software components into the

end-to-end verification, they manually convert the functional correctness guaran-

tees of the HACL* implementation into an LTL specification, then link it with

the LTL specifications of the hardware modules. Their specifications of security

and soundness of RA come from their earlier work [17] that defines a necessary

and su�cient set of properties to achieve secure RA. Their approach of verifying

core properties of their attestation functionality in hardware, but also incorporat-

ing the external verification of the HACL* crypto implementation, is compatible

with the design goals of the Copland e↵ort. Rather than prove properties about

specific hardware, Copland relies on a core, verified attestation manager that co-

ordinates independently-verified components like HACL* as Attestation Service

Providers. Although their end-to-end security guarantees are impressive, our at-

testation managers are designed to support a wide range of attestation scenarios

on diverse platforms, rather than the fixed, embedded platform they focus on in

this work.
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9.8 Measurement Tools

9.8.1 Maat

Maat [48] is a prototype measurement and attestation (M & A) framework de-

signed as a centralized service to coordinate and protect the components involved

in attestation protocols. Its functionality includes selecting, collecting, and evalu-

ating integrity measurements that indicate the trustworthiness of a system’s static

hardware/software configuration and its run-time state. Maat’s centralized and

componentized design has a number of benefits: it avoids duplication of measure-

ment, supports controlled registration and protection of components, and e�cient

protocol negotiation/selection. Much of the terminology in the Copland e↵ort is

borrowed from the Maat work, including Attestation Manager, Attestation Service

Provider, measurement agent, evidence, and target. The Copland language was

originally designed with Maat measurement specifications in mind as targets. Our

current work can be viewed as a formally verified alternative to Maat. We also

envision a use-case, left for future work, where our formally verified Attestation

Managers provide a principled means to orchestrate primitive measurers running

as Maat services. Maat is currently in the public release process to become open

source.

9.8.2 LKIM

LKIM (Linux Kernel Integrity Measurer) [41] is a dynamic measurement tool

that observes the runtime state of a Linux kernel. It aims to detect modifications

to the kernel such as “kernel-level rootkits” that are notoriously di�cult to moni-

tor from components that themselves rely on the potentially compromised kernel.

To run outside of the kernel’s control, LKIM leverages “virtual-machine introspec-
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tion” to view and report the kernel’s contents to a remote decision maker. LKIM

is an example of an integrity measurer whose evidence cannot be appraised by

a single, known golden value, but rather detects anomalous patterns that bring

kernel memory outside its behavioral specification. Cross-domain measurement

agents like LKIM are critical for supporting more complex, layered attestations:

OS kernels act as critical execution contexts for other primitive measurement and

attestation components. LKIM remains proprietary, but has been exercised on a

variety of critical government applications.

9.8.3 MSRR

MeaSeReR (MSRR) [20] is a general-purpose framework that supports build-

ing application-specific dynamic measurers. It extends the GNU Debugger (GDB)

to support measurement capabilities that are critical for monitoring the run-time

state of a program. These capabilities include sampling code, globals, heap, stack

locals, and the call-stack. The framework also provides a measurement policy lan-

guage to specify complex measurements that are recurring, triggered by system

events, or depend on the results of previous measurements. This gives the user a

high level interface to quickly develop one-o↵ measurers that are sensitive to the

behavior of specific applications. For time-expensive measurements that would

stall an application if performed directly, a snapshot feature allows measuring a

forked copy of the application o✏ine while the original continues executing. The

commands can be invoked either locally or remotely through a JSON RPC, an

essential feature for remote attestation scenarios. A performance analysis shows

that MSRR has an acceptable e↵ect on normal program execution time bench-

marks. The authors conclude with a case study showing how MSSR measurement
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policies can detect run-time attacks on DreamChess, an open source chess game

for Windows, Mac, and Linux.

9.8.4 Runtime State Verification on Resource-Constrained Platforms

In Runtime State Verification on Resource-Constrained Platforms [11], the

authors explore the challenges of implementing runtime measurement agents on

resource-constrained platforms such as IoT devices. The challenges presented

include a lack of trusted hardware, memory, storage, and power constraints, lack

of memory separation, and a diversity of platform services and communication

capabilities. They built their prototype on ARM’s mbedOS and uVisor micro

hypervisor, on the Freescale FRDM-K64F hardware platform, although they argue

that their framework is designed to avoid platform-specific features. They limit

their measurements to those that can be “comprehensible and verifiable” by an

external appraiser, restricting evidence checks to small ranges of values. They

chose types of measurers to get as complete a picture of the runtime state as

possible given the limited resources.

These measurement types include a static hash of persistent flash memory,

runtime analysis of the interrupt vector table, runtime memory introspection of

uVisor, and runtime application introspection. They intend that developers on

other IoT-like devices will use these measurers as templates, and use their API to

build their own platform and application-specific measurers. They do some exe-

cution time and power analysis to show that their measurements are largely negli-

gible to performance on their prototype system. Their discussion about matching

measurers to well-defined appraisers, and their intent to support integration of

platform-specific measurement agents aligns with the design goals of the Copland
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framework. They also highlight the diversity of platforms that may be involved

in attestation–inspiring generality in our framework to support measurement of

such platforms.
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Appendix A

Copland + JSON

t  A | @p t | (t! t) | (t
⇡
� t) | (t ⇡⇠ t)

A  ASP ā | CPY | SIG | HSH

Figure A.1. Copland Phrase grammar where:
ā = (m, s̄, p, r); m = asp id 2 N; s̄ is a list of string arguments;
p = place id 2 N; r = target id 2 N; and ⇡ = (⇡1,⇡2) is a pair of
evidence splitting functions.

ET  mt | NE n | ASPE ā p ET

| SIGE p ET | HSHE p ET

| SSE ET ET | PPE ET ET

Figure A.2. Evidence Type grammar where:
ā and p are as in Fig. 3.1 and n = nonce id 2 N.

ETc  mtc | Nc n bs | ASPc ā p bs ETc

| SIGc p bs ETc | HSHc p bs ET

| SSE ETc ETc | PPE ETc ETc

Figure A.3. Typed Concrete Evidence grammar where:
ā, p, and n are as in Fig. 3.5 and bs 2 BS (binary values).
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A.1 General ADT JSON Schema

We represent Copland terms (t in Figure A.1), Evidence Types (ET in Fig-

ure A.2), and Typed Concrete Evidence (ETc in Figure A.3) as Algebraic Data

Types (ADTs) in the Haskell AM prototype. In JSON we represent each ADT as

an object with two fields:

1. constructor-the constructor name as a JSON string (< string >). Construc-

tor names must be unique for unambiguous parsing.

2. data-An ordered JSON array (< array >) that holds the arguments for

that particular constructor. Members of the data array will di↵er from

constructor to constructor.

The general schema for ADTs (labeled by placeholder < ADT >) is as follows:

{

"constructor": < string >,

"data": < array > | < ADT >

}

The < ADT > alternative for the data field accounts for degenerate nesting of

constructors (for example in the ASP constructors below).

A.2 Copland Phrase JSON Schemas

The following JSON object schemas correspond to the constructors of the

Copland phrase grammar (t) in Figure A.1, and satisfy the < term > placeholder.

The < number > and < string > placeholders are for the standard json number
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and string datatypes. The order of items in the “data” subarray is significant–

they match the order of arguments to each constructor. Finally, the placeholder

< “ALL00|“NONE
00
> stands for a JSON string that is either the constant “ALL”

or “NONE”.

< asp params > := [ < number >, [< string >], < number >, < number > ]

{

"constructor": "Coq_asp",

"data": {"constructor": "ASPC",

"data": < asp params >

}

}

{

"constructor": "Coq_asp",

"data": {"constructor": "SIG"}

}

{

"constructor": "Coq_att",

"data": [ < number >,

< term > ]

}
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< SP > := “ALL” | “NONE”

{

"constructor": "Coq_bseq",

"data": [ [< SP >, < SP >],

< term >,

< term > ]

}

A.3 Copland Evidence Type Schemas

The following JSON object schemas correspond to the constructors of the

Evidence Type grammar (ET) in Figure A.2, and satisfy the < evidence type >

placeholder.

{

"constructor": "Coq_mt"

}

{

"constructor": "Coq_uu",

"data": [ < asp params >,

< number >,

< evidence type > ]

}
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{

"constructor": "Coq_gg",

"data": [ < number >,

< evidence type > ]

}

{

"constructor": "Coq_ss",

"data": [ < evidence type >,

< evidence type > ]

}

A.4 Copland Typed Concrete Evidence Schemas

The following JSON object schemas correspond to the constructors of the

Typed Concrete Evidence grammar (ETc) in Figure A.3, and satisfy the< evidence conc >

placeholder. Note: Constructor fields that hold binary data (bs parameters in the

grammar) become base64-encoded JSON strings (< b64 string >), holding arbi-

trary binary data–hashes, nonces, signatures, etc:

< b64 string > := < string > (Base64 encoded)

{

"constructor": "Coq_nnc",

"data": [ < number >, < b64 string > ]

}
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{

"constructor": "Coq_uuc",

"data": [ < asp params >,

< number >,

< b64 string >,

< evidence conc > ]

}

{

"constructor": "Coq_hhc",

"data": [ < number >,

< b64 string >

< evidence type > ]

}

{

"constructor": "Coq_ssc",

"data": [ < evidence conc >,

< evidence conc > ]

}
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A.5 Message Schemas

RequestMessage = {
toP lace :: p,

fromPlace :: p,
reqNameMap :: p => Address,

reqTerm :: t,
reqEv :: [ bs ] }

ResponseMessage = {
respToP lace :: p,

respFromPlace :: p,
respEv :: [ bs ] }

Figure A.4. Request and Response Message record structures.

We represent Request and Response Messages as record structures in Fig-

ure A.4. Their respective JSON object schemas are as follows:

{

"toPlace": < number >,

"fromPlace": < number >,

"reqNameMap": < nameMap >,

"reqTerm": < term >,

"reqEv": < raw evidence >

}

{

"respToPlace": < number >,

"respFromPlace": < number >,

"respEv": < raw evidence >

}
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< raw evidence > := [ < b64 string > ]

< nameMap > is a JSON object of the following form:

{pl1:addr1, pl2:addr2, ...}

where pl1, pl2, ... are JSON key strings that represent a Copland place identifier

(i.e. “1”, “2”, ...) and addr1, addr2, ... are JSON strings (< string >) that rep-

resent platform addresses. We leave address strings abstract in this specification,

but a common usage would be a string of the form ip:port.

SigRequestMessage = {evBits :: bs}

SigResponseMessage = {sigBits :: bs}

Figure A.5. Sig Request and Response Message record structures.

We represent Sig Request and Response Messages as record structures in Fig-

ure A.5. Their respective JSON object schemas are as follows:

{

"evBits": < b64 string >

}

{

"sigBits": < b64 string >

}
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AspRequestMessage = {
aspArgs :: ā,

aspInputEv :: [ bs ] }

AspResponseMessage = {aspBits :: bs}

Figure A.6. Asp Request and Response Message record structures.

We represent Asp Request and Response Messages as record structures in Fig-

ure A.6. Their respective JSON object schemas are as follows:

{

"aspArgs": < asp params >,

"aspInputEv": < raw evidence >

}

{

"aspBits": < b64 string >

}
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S. Zanella-Béguelin. Dependent types and multi-monadic e↵ects in F*. In 43rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), pages 256–270. ACM, Jan. 2016.

[65] H. D. Team. Software transactional memory haskell library.

[66] The Coq Development Team. Coq.

[67] Trusted Computing Group. TCG TPM Specification. Trusted Computing Group,

3885 SW 153rd Drive, Beaverton, OR 97006, version 1.2 revision 103 edition, July

2007.

[68] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and

T. Anderson. Verdi: A framework for implementing and formally verifying dis-

tributed systems. In Proceedings of the 36th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’15, pages 357–368, New

York, NY, USA, 2015. Association for Computing Machinery.

156



[69] D. Woos, J. R. Wilcox, K. Simmons, K. Palmskog, and R. Doenges. Structtact

coq library. https://github.com/uwplse/StructTact, 2020.

[70] W. Xu, G.-J. Ahn, H. Hu, X. Zhang, and J.-P. Seifert. Dr@ft: E�cient remote

attestation framework for dynamic systems. In D. Gritzalis, B. Preneel, and

M. Theoharidou, editors, Computer Security – ESORICS 2010, pages 182–198,

Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[71] J. Zhao, S. Nagarakatte, M. Martin, and S. A. Zdancewic. Formalizing the llvm

intermediate representation for verified program transformations. In Proceedings

of the ACM Symposium on Principles of Programming Languages (POPL), 2012,

POPL ’08, pages 3–15. ACM, 2012.

157

https://github.com/uwplse/StructTact

	Table of Contents
	Introduction
	From Trust to Remote Attestation
	System-Level Security
	Overview of Contributions
	Publications and Code Artifacts

	Copland by Example:  Virus Checking as Attestation
	Copland
	Copland Phrases
	Copland Evidence Types
	Copland Reference Semantics
	Copland Evidence Semantics
	Copland Events
	Copland LTS Semantics
	Copland Event Systems

	Copland Correctness Theorem

	Execution Semantics: Attestation and Appraisal
	Copland Virtual Machine
	Raw and Type-Tagged Evidence
	Measurement and Cryptographic Primitives
	Remote and Parallel CVM Execution
	Copland Compiler

	Appraisal
	Typed Concrete Evidence
	Generalized Appraisal Procedure
	Primitive Appraisal Checkers
	Appraisal in the AM Monad


	Verification
	CVM Verification
	Lemmas
	Automation

	Appraisal Correctness
	ASP Coverage
	Signature Appraisal Coverage

	Verification LOC Statistics
	Copland Reference Semantics
	CVM (Attestation)
	Appraisal
	LOC Totals


	Appraisal Soundness
	Security Architecture
	Adversary Analysis
	Component Implementations
	Case Study: DARPA UAV Demonstration Platform
	Ground Station and UAV Security Architectures
	Copland Phrase Description/Components
	Event Semantics
	Architectural Assumptions
	AM Monad alternatives


	Instantiating Flexible Mechanisms
	Haskell Attestation Manager
	Admitted Definitions in Formal Spec
	Deriving typeclass instances in Haskell
	ASP Servers
	Instantiating the CVM Monad
	Parallel Interpretation of Copland Phrases
	Configuration of CVM Nodes and ASPs

	Copland + JSON
	General ADT JSON Schema
	Copland JSON Schemas
	Remote CVM Message Schemas

	Flexible Mechanisms Implementation
	Certificate Style (Simple)
	Certificate Style
	ASP Bundling Semantics
	Cached Certificate Style
	Parallel Mutual Attestation
	Layered Background Check


	Conclusion and Future Work
	Related Work
	Models of Security
	Formally Verified System-level components
	Trusted Platform Module(TPM)
	Process Calculi
	Remote Attestation Frameworks
	IMA
	DR@FT
	Bind
	Policy Driven Remote Attestation
	Copilot
	TrustLite and TyTan

	Analysis of Remote Attestation
	Principles of Remote Attestation
	Confining adversary actions via measurement
	Bundling evidence for layered attestation
	A Minimalist Approach to Remote Attestation
	Negotiation of Attestation Protocols

	Formal Verification of Remote Attestation
	HYDRA
	ERASMUS
	VRASED

	Measurement Tools
	Maat
	LKIM
	MSRR
	Runtime State Verification on Resource-Constrained Platforms


	Copland + JSON
	General ADT JSON Schema
	Copland Phrase JSON Schemas
	Copland Evidence Type Schemas
	Copland Typed Concrete Evidence Schemas
	Message Schemas

	References

