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Abstract. We present Copland, a language for specifying layered
attestations. Layered attestations provide a remote appraiser with struc-
tured evidence of the integrity of a target system to support a trust
decision. The language is designed to bridge the gap between formal anal-
ysis of attestation security guarantees and concrete implementations. We
therefore provide two semantic interpretations of terms in our language.
The first is a denotational semantics in terms of partially ordered sets of
events. This directly connects Copland to prior work on layered attes-
tation. The second is an operational semantics detailing how the data
and control flow are executed. This gives explicit implementation guid-
ance for attestation frameworks. We show a formal connection between
the two semantics ensuring that any execution according to the oper-
ational semantics is consistent with the denotational event semantics.
This ensures that formal guarantees resulting from analyzing the event
semantics will hold for executions respecting the operational semantics.
All results have been formally verified with the Coq proof assistant.

1 Introduction

It is common to ask a particular target system whether it is trustworthy enough
to engage in a given activity. Remote attestation is a useful technique to support
such trust decisions in a wide variety of contexts. Fundamentally, remote attes-
tation consists in generating evidence of a system’s integrity via measurements,
and reporting the evidence to a remote party for appraisal. Depending on their
interpretation of the evidence, the remote appraiser can adjust their decision
according to the level of risk they are willing to assume.

Others have recognized the insufficiency of coarse-grained measurements in
supporting trust decisions [8,10,20,22]. Integrity evidence is typically either too
broad or too narrow to provide useful information to an appraiser. Very broad
evidence—such as patch levels for software—easily allows compromises to go
undetected by attestation. Very narrow evidence—such as a combined hash of
the complete trusted computing base—does not allow for natural variation across
systems and over time.
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An alternative approach is to build a global picture of system integrity by
measuring a subset of system components and reasoning about their integrity
individually and as a coherent whole. This approach can give an appraiser a more
nuanced view of the target system’s state because it can isolate integrity viola-
tions, telling the appraiser exactly which portions of the system can or cannot
be trusted. We call this approach layered attestation because protected isola-
tion frequently built into systems (e.g. hypervisor-enforced separation of virtual
machines) allows the attestation to build the global picture of integrity from the
bottom up, one layer at a time. A layered attestation whose structure mimics
the layered dependency structure of a target system can provide strong trust
guarantees. In prior work, we have formally proved that “bottom-up” strate-
gies for layered attestation force an adversary to either corrupt well-protected
components or work within small time-of-check-time-of-use windows [17,18].

The “bottom-up” principle has been embodied in many attestation systems
(e.g. [2,6,7,10,22]). A common tactic in these papers is to design the target
system and the attestation protocol in tandem to ensure the structure of the
attestation corresponds to the structure of the system. This results in solutions
that are too rigid and overly prescriptive. The solutions do not translate to other
systems with different structures.

In previous work, members of our team have taken a different approach. Maat
is a policy-based measurement and attestation (M&A) framework which provides
a centralized, pluggable service to gather and report integrity measurements [16].
Maat listens for attestation requests and can act as both an appraiser and an
attester, depending on the needs of the current scenario. After a request for
appraisal is received, the Maat instance on the appraiser system contacts and
negotiates with the attesting system’s Maat instance to agree upon the set of
evidence that must be provided for the scenario. Thus Maat provides a flexible
set of capabilities that can be tailored to the needs of any given situation. It is
therefore a much more extensible attestation framework.

In early development of Maat, the negotiation was entirely based on a set of
well-known UUIDs and was limited in flexibility, especially when Maat instances
did not share a core set of measurement capabilities. We discovered that this
approach to negotiation severely limited the extensibility of Maat. It is not suf-
ficient to have a flexible set of attestation mechanisms—a flexible language for
specifying layered attestations is crucial. This paper introduces such a language.

Contribution. We present Copland, a language and formal system for
orchestrating layered attestations. Copland provides domain specific syntax for
specifying attestation protocols, an operational semantics for guiding implemen-
tations, and a denotational semantics for reasoning and negotiation. We designed
Copland with Maat in mind aiming to address three main requirements.

First, it must be flexible enough to accommodate the wide diversity of capa-
bilities offered by Maat. Copland is parametric with respect to the basic actions
that generate and process evidence (i.e. measurement and bundling). Since we
cannot expect all platforms and architectures to have the same set of capabili-
ties, Copland focuses instead on specifying the ways in which these pieces fit
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together. Copland programs, which we call phrases or terms, are built out of
a small set of operators designed to orchestrate the activities of measurement
agents across several layers of a target system.

Second, the language must have an unambiguous execution semantics. We
provide a formal, operational semantics allowing a target to know precisely how
to manage the flow of control and data throughout the attestation. This oper-
ational semantics serves as a correctness constraint for implementations, and
generates traces of events that record the order in which actions occurred.

Finally, it must enable static analysis to determine the trust properties guar-
anteed by alternative phrases. For this purpose we provide a denotational seman-
tics relating phrases to a partially ordered set of events. This semantics is explic-
itly designed to connect with our prior work on analytic principles of layered
attestation [17,18]. By applying those principles in static analysis, both target
and appraiser can write policies determining which phrases may be used in which
situations based on the trust guarantees they provide.

Critically, we prove a strong connection between the operational execution
semantics and the denotational event semantics. We show that any trace gener-
ated by the operational semantics is a linearization of the event partial ordering
given by the denotational semantics. This ensures that any trust conclusions
made from the event partial order are guaranteed to hold over the concrete exe-
cution. In particular, our previous work [17,18] characterizes what an adversary
must do to avoid detection given a specific partial order of events, identifying
strategies to force an adversary to work quickly in short time-of-check-time-
of-use windows, or dig deeper into more protected layers of the system. This
connection is particularly important in light of the flexibility of the language.
Since our basic tenet is that a more constrained language is inherently of less
value, it is crucial that we provide a link to analytic techniques that help people
distinguish between good and bad ways to perform a layered attestations. We
discuss this connection to our previous work in much more detail in Sect. 7.

Phrases

denotational operational

Event Poset constrains Small-Step

Fig. 1. Semantic relations

Figure 1 depicts the connections among our various contributions. It also
provides a useful outline of the paper. Section 3 describes the syntax of Copland
corresponding to the apex of the triangle in Fig. 1. Section 4 introduces events.
Events are the foundation for both semantic notions depicted in Fig. 1. Each
semantic notion constrains the event ordering in its own way. The denotational
semantics of the left leg of the triangle is presented in Sect. 5, and the operational
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semantics of the right leg is given in Sect. 6. The crucial theorem connecting the
two semantic notions is sketched in Sect. 7.

All lemmas and theorems stated in this paper have been formally verified
using the Coq proof assistant [1]. The Coq proofs are available at https://ku-
sldg.github.io/copland/. The notation used in this paper closely follows the Coq
proofs. The tables in Appendix B link figures and formulas with their definitions
in the Coq proofs.

Before jumping into the formal details of the syntax and semantics of Cop-
land, however, we present a sequence of simple examples designed to give the
reader a feel for the language and its purpose.

2 Examples of Layered Attestations

Consider an example of a corporate gateway that appraises machines before
allowing them to join the corporate network. A simple attestation might entail
a request for the machine to perform an asset inventory to ensure all software is
up-to-date. For purposes of exposition, we may view this as an abstract userspace
measurement USM that takes an argument list ā1 of the enterprise software to
inventory. We can express a request for a particular target p to perform this
measurement with the following Copland phrase:

@p USM ā1 (1)

This says the measurement capability identifiable as USM should be executed at
location identified by p using arguments ā1. The request results in evidence of
the form Up(ξ) indicating the type of measurement performed, the target of the
measurement p, and any previously generated evidence (in this case the empty
evidence ξ) it received and combined with the newly generated evidence.

If the company is concerned with the assets in the inventory being under-
mined by a rootkit in the operating system kernel, it might require additional
evidence that no such rootkit exists. This could be done by asking for a ker-
nel integrity measurement KIM to be taken of the place p in addition to the
userspace measurement. The request could be made with the following phrase:

@p (KIM p ā2
(⊥,⊥)∼ USM ā1) (2)

In this notation, KIM p ā2 represents a request for the KIM measurement capa-

bility to be applied to the target place p with arguments ā2. The symbol
(�,r)∼

indicates the two measurements may be taken concurrently. The annotation �
defines how evidence accumulated so far is transformed for use by the phrase on
the left, and r for the one on the right. In the case of (⊥,⊥), no evidence is sent
in either direction. The evidence resulting from the two composed measurements
has the form Kp

p(ξ) ‖ Up(ξ), where ‖ indicates the measurements were invoked
concurrently.

If the enterprise has configured their machines to have two layers of different
privilege levels (say by virtualization), then they may wish to request that the

https://ku-sldg.github.io/copland/
https://ku-sldg.github.io/copland/
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kernel measurement be taken from a more protected location q. This results in
the following request.

@q (KIM p ā2
(⊥,⊥)∼ @p USM ā1) (3)

Notice the kernel measurement target is still the kernel at p, but the request is
now being made of the measurement capability located at q. The kernel measure-
ment of p taken from q and the request for p to take a userspace measurement
of its own environment can occur concurrently. The resulting evidence has the
form Kp

q(ξ) ‖ Up(ξ), where the subscript q indicates the kernel measurement was
taken from the vantage point of q, and the superscript p indicates the location
of the kernel measurer’s target. The subscript p in the second occurrence of the
@ sign indicates that the userspace measurement is taken from location p.

Finally, consider two more changes to the request that makes the evidence
more convincing. By measuring the kernel at p before the userspace measurement
occurs, the appraiser can learn that the kernel was uncompromised at the time of
the userspace measurement. This bottom-up strategy is common in approaches
to layered attestation [17,22]. Additionally, an appraiser may wish each piece of
evidence to be signed as a rudimentary chain of evidence. These can both be
specified with the following phrase.

@q ((KIM p ā2 → SIG)
(⊥,⊥)≺ @p (USM ā1 → SIG)) (4)

In this phrase, the ≺ symbol is used to request that the term on the left complete
its execution before starting execution of the term on the right. The → symbol
routes data from the term on the left to the term on the right, similar to function
composition. In this case evidence coming from KIM and USM is routed to two
separate instances of a digital signature primitive. Since these signatures occur
at two different locations, they will use two different signing keys. The resulting
evidence has the form [[Kp

q(ξ)]]q ;; [[Up(ξ)]]p, where ;; indicates the evidence was
generated in sequence, and the square brackets represent signatures using the
private key associated with the location identified by the subscript.

Copland provides a level of flexibility and explicitness that can be lever-
aged for more than the prescription of the evidence to be gathered. Using this
common semantics, appraisers and attesters have the ability to negotiate spe-
cific measurement agents and targets to utilize to prove integrity. For example, if
the measurement requested is computationally intensive, an attester may prefer
to provide a cached version of the evidence. The appraiser may be willing to
accept this cached version, depending on local policy. In this scenario, a negoti-
ation would take place between the two systems to determine an agreeable set
of terms. The appraiser could begin by requesting that Eq. (4) be performed by
the target, which would then counter with a different phrase specifying cached
instead of fresh measurement. Depending on the implementation, this difference
could utilize an entirely separate measurement primitive (e.g., C USM instead
of USM) or merely a separate set of arguments to the primitive. The ability to
specify the collection of previously generated evidence is especially important
when gathering evidence created via a measured boot.



202 J. D. Ramsdell et al.

The actions taken to appraise evidence can also be defined by phrases and
negotiated before the attestation takes place. If the target is willing to perform
a measurement action but doesn’t trust the appraiser with the result, the two
parties could agree upon a mutually trusted third party to act as the appraiser.

3 Phrases

We begin with the basic syntax of phrases in Copland. Figure 2 defines the
grammar of phrases (T ) parameterized by atomic actions (A) and the type (E) of
evidence they produce when evaluated. Figure 3 defines phrase evaluation. Each
phrase specifies what measurements are taken, various operations on evidence,
and where measurements and operations are performed. Phrases also specify
orderings and dependencies among measurements and operations.

A CPY | USM ā | KIM P ā | SIG | HSH | · · ·
T A | @P T | (T T ) | (T π≺ T ) | (T π∼ T )
E ξ | UP (E) | KP

P (E) | [[E]]P | #P E | (E ;; E) | (E ‖ E) | · · ·
where π = (π1, π2) is a pair of splitting functions.

Fig. 2. Phrase and evidence grammar

The atomic phrases either produce evidence via measurement, or trans-
form evidence via computation. Some actions, like USM ā, perform measure-
ments of their associated place, while others, such as KIM q ā, measure another
place. A userspace measurement, USM ā, measures the local environment. The
term @p USM ā requests that place p perform some measurement USM ā of its
userspace. Such measurements may range from a simple file hash to complex
run time analysis of an application. A kernel integrity measurement, KIM q ā,
measures another place. The term @p KIM q ā requests that p perform a kernel
measurement on place q. Such measurements measure one place from another
and perform integrity measurements such as LKIM [14]. Starting from a trusted
place p, @p KIM q ā can gather evidence for establishing trust in q and transi-
tively construct chains of trusted enclaves.

The Copland phrase @p t corresponds to the essential function of remote
attestation—making a request of place p to execute a protocol term t. Places cor-
respond with attestation managers that are capable of responding to attestation
requests. Places may be as simple as an IoT device that returns a single value
on request or as complicated as a full SELinux installation capable of complex
protocol execution.

Evidence produced by @p USM ā and @p KIM q ā have types Up(e) and Kq
p(e)

respectively where p is the place performing measurement, q is the target place,
and e is the type of incoming evidence. Place p is obtained from context specified
by the @p t phrase invoking KIM q ā. Notice that we work with dependent types.
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The phrases (t1 → t2), (t1
π≺ t2), and (t1

π∼ t2) specify sequential and paral-
lel composition of subterms. Phrase (t1 → t2) evaluates two terms in sequence,
passing the evidence output by the first term as input to the second term. The
phrase (t1

π≺ t2) is similar in that the first term runs to completion before the
second term begins. It differs in that evidence is not sent from the first term
as input to the second term. Instead, each term receives some filtered version
of the evidence accumulated thus far from the parent phrase. This evidence is
split between the two subterms according to the splitting functions π = (π1, π2)
that specify the filter used before passing evidence to each subterm. The result-
ing evidence has the form (e1 ;; e2) indicating evidence gathered in sequence.
Finally, (t1

π∼ t2) specifies its two subterms execute in parallel with data split-
ting specified by π = (π1, π2). The evidence term (e1 ‖ e2) captures that subterm
evaluation occurs in parallel.

Two common filters are identity and empty. id e = e returns its argument,
producing a copy of the filtered evidence while ⊥ e = ξ always returns empty
evidence regardless of input. For example, π = (⊥,⊥) passes empty evidence
to both subterms, π = (⊥, id) sends all evidence to the right subterm, and
π = (id , id) sends all evidence to both subterms.

A collection of operator terms specifies various operations over evidence. SIG,
HSH, and CPY generate a signature, a hash and a copy of evidence previously
gathered. The evidence forms generated by SIG and HSH are [[e]]p and #p e,
respectively. A place identifies itself in a hash by including its identity in the
data being hashed. Unlike a cryptographic signature, this serves only to identify
the entity performing the hash. It does not provide protection against forgery.
Our choice to use hashes in this way is not critical to achieving the Copland
design goals. Replacing it with more standard hashes would cause no problem.
Other operator terms are anticipated, but these are sufficient for this exposition
and for most phrases used in our examples.

E(CPY, p, e) = e

E(USM ā, p, e) = Up(e)

E(KIM q ā, p, e) = Kq
p(e)

E(SIG, p, e) = [[e]]p
E(HSH, p, e) = #p e

E(@q t, p, e) = E(t, q, e)
E(t1 t2, p, e) = E(t2, p, E(t1, p, e))

E(t1 π≺ t2, p, e) = E(t1, p, π1(e)) ;; E(t2, p, π2(e)) where π = (π1, π2)

E(t1 π∼ t2, p, e) = E(t1, p, π1(e)) ‖ E(t2, p, π2(e)) where π = (π1, π2)

Fig. 3. Evidence semantics
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4 Events

Events are observable effects associated with phrase execution. For example,
a userspace measurement event occurs when a USM term executes; a remote
request event occurs when @p t begins executing; and a sequence of split and
join events occur when the various sequential and parallel composition terms
execute. The events resulting from executing a phrase characterize that phrase.

The events associated with a subphrase t1 within phrase t0 is determined by
the position in t0 at which the subphrase occurs. For example, the term (t → t)
has two occurrences of t that will be associated with some events. It is essential
that the set of events associated with the left occurrence is disjoint from the set
of events associated with the right occurrence. For this reason, each event has
an associated natural number that is unique to that event.

[t]i+1
i ∈ T i+1

i if t is atomic

[@p t]j+1
i ∈ T j+1

i if t ∈ T j
i+1

[t1 t2]ki ∈ T k
i if t1 ∈ T j

i and t2 ∈ T k
j

[t1
π≺ t2]k+1

i ∈ T k+1
i if t1 ∈ T j

i+1 and t2 ∈ T k
j

[t1
π∼ t2]k+1

i ∈ T k+1
i if t1 ∈ T j

i+1 and t2 ∈ T k
j

Fig. 4. Annotated terms

Annotated terms enable the generation of a unique number for each event in
the Coq proofs. An annotated term, [t]ji , adds bounds, i and j to term t, where
i and j are natural numbers. By construction each event related to [t]ji has a
unique natural number k such that i ≤ k < j. The set of all annotated terms is
defined by T̄ =

⋃∞
i,j=0 T j

i , where T j
i is defined in Fig. 4. The number of events

associated with [t]ji is j − i.
As examples, two terms from T̄ are:

[[KIM p ā]10 → [SIG]21]
2
0 [@p [USM ā]21]

3
0

The annotations on KIM and SIG indicate that the event associated with KIM
is numbered 0 while the event associated with SIG is numbered 1. The entire
sequence term includes numbers for both KIM and SIG. Similarly the @p USM ā
term allocates the number 1 for USM, and adds 0 and 2 for a request and reply
event respectively associated with @p t. For details of annotation generation, see
Fig. 9 in Appendix A, which presents a simple function that translates terms
into annotated terms.

Figure 5 presents event syntax while Fig. 6 relates phrases to events. The
relation between annotated term t, place p, evidence e, and the associated event
v, is written t �p

e v. Given some term t and current evidence e in place p, t �p
e v

relates event v to t in p. Note that each event has a natural number whose
purpose is to uniquely identify the event as required by the Coq proofs.



Orchestrating Layered Attestations 205

V CPY(N, P, E) | USM(N, P, L, E, E) | KIM(N, P, L, E, E)
| SIG(N, P, E, E) | HSH(N, P, E, E) | REQ(N, P, P, E)
| RPY(N, P, P, E) | SPLIT(N, P, E, E, E) | JOIN(N, P, E, E, E)

Fig. 5. Event grammar

[CPY]i+1
i �p

e CPY(i, p, e)
[USM ā]i+1

i �p
e USM(i, p, ā, e,Up(e))

[KIM q ā]i+1
i �p

e KIM(i, p, ā, e,Kq
p(e))

[SIG]i+1
i �p

e SIG(i, p, e, [[e]]p)
[HSH]i+1

i �p
e HSH(i, p, e,#p e)

[@q t]ji �p
e REQ(i, p, q, e)

[@q t]ji �p
e v if t �q

e v

[@q t]ji �p
e RPY(j − 1, p, q, Ē(t, q, e))

[t1 t2]ji �p
e v if t1 �p

e v

[t1 t2]ji �p
e v if t2 �

p

Ē(t1,p,e)
v

[t1
π≺ t2]ji �p

e SPLIT(i, p, e, π1(e), π2(e))
[t1

π≺ t2]ji �p
e v if t1 �

p
π1(e)

v

[t1
π≺ t2]ji �p

e v if t2 �
p
π2(e)

v

[t1
π≺ t2]ji �p

e JOIN(j − 1, p, e1, e2, e1 ;; e2)
where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))

[t1
π∼ t2]ji �p

e SPLIT(i, p, e, π1(e), π2(e))
[t1

π∼ t2]ji �p
e v if t1 �

p
π1(e)

v

[t1
π∼ t2]ji �p

e v if t2 �
p
π2(e)

v

[t1
π∼ t2]ji �p

e JOIN(j − 1, p, e1, e2, e1 ‖ e2)
where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))

Fig. 6. Events of terms

Each atomic term has exactly one associated event that records execution
details of the term including resulting evidence. Each @p t term is associated
with a request event, a reply event, and the events associated with term t. Each
(t1 → t2) term is associated with the events of its subterms. Both (t1

π≺ t2)
and (t1

π∼ t2) are associated with the events of their subterms as well as a split
and a join event. The evidence function Ē is the same as E except it applies to
annotated terms instead of terms.

Essential properties of the annotations are expressed in Lemmas 1–3. In each
lemma, let ι be a projection from an event to its number.



206 J. D. Ramsdell et al.

Lemma 1. [t]ji �p
e v implies i ≤ ι(v) < j.

Each event associated with a term has a number in the range of the term’s
annotation. This is critical to the way that subterm annotations are composed
to form term annotations.

Lemma 2. t �p
e v1 and t �p

e v2 and ι(v1) = ι(v2) implies v1 = v2.

Event numbers are unique to events. If two events have the same number,
they must be the same event.

Lemma 3. i ≤ k < j implies for some v, [t]ji �p
e v and ι(v) = k.

There is an event associated with every number in an annotation range. There
are no unassigned numbers in the range of an annotation.

5 Partial Order Semantics

The previous mapping of phrases to evidence types defines a denotational seman-
tics for evaluation. The t �p

e v relation defines visible events that result when
a phrase executes. Here we add a partial order to define correct orderings of
events associated with an execution. In Definition 5, we define strict partial order
R(t, p, e) over the set {v | t �p

e v}, for some term t, place p, and initial evidence e.
It defines requirements on any event trace produced by evaluating t at p with e.

The relation R(t, p, e) is defined by first introducing a language for repre-
senting strict partial orders, then representing semantics of language terms as
event partial orders. The grammar defining the objects used to represent strict
partial orders is

O ← V | (O � O) | (O �� O).

Events are ordered with the precedes relation. We write o :v ≺ v′ when event
v precedes another v′ in partial order o. We write v ∈ o if event v occurs in o.

Definition 4 (Precedes). o : v ≺ v′ is the smallest relation such that:

1. o = o1 � o2 implies v ∈ o1 and v′ ∈ o2 or o1 : v ≺ v′ or o2 : v ≺ v′

2. o = o1 �� o2 implies o1 : v ≺ v′ or o2 : v ≺ v′

The set of events associated with o is the set {v | v ∈ o}, and o represents
the poset that orders that set.

If o1 and o2 represent disjoint posets, then o1 � o2 represents the poset that
respects the orders in o1 and o2 and for which every event in o1 is before every
event in o2. Therefore, � is called the before operator. Additionally, o1 �� o2
represents the poset which simply retains the orders in both o1 and o2, and so ��
is called the merge operator. When applied to mutually disjoint posets, � and
�� are associative.
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Definition 5 (Strict Partial Order)

R(t, p, e)(v, v′) = V(t, p, e) : v ≺ v′

where V(t, p, e) is defined in Fig. 7.

The definition of V(t, p, e) is carefully crafted so that the posets combined by� and �� are disjoint.
For the phrase @q USM ā, the strict partial order term starting with 0 is

Example 6. V([@q [USM ā]21]
3
0, p, e) = REQ(0, . . .) � USM(1, . . .) � RPY(2, . . .).

V([CPY]i+1
i , p, e) = CPY(i, p, e)

V([USM ā]i+1
i , p, e) = USM(i, p, ā, e,Up(e))

V([KIM q ā]i+1
i , p, e) = KIM(i, p, ā, e,Kq

p(e))
V([SIG]i+1

i , p, e) = SIG(i, p, e, [[e]]p)
V([HSH]i+1

i , p, e) = HSH(i, p, e,#p e)
V([@q t]ji , p, e) = REQ(i, p, q, e) � V(t, q, e) � RPY(j − 1, p, q, Ē(t, q, e))

V([t1 t2]ji , p, e) = V(t1, p, e) � V(t2, p, Ē(t1, p, e))
V([t1

π≺ t2]ji , p, e) = SPLIT(i, p, e, π1(e), π2(e)) � V(t1, p, π1(e)) � V(t2, p, π2(e))�
JOIN(j − 1, p, e1, e2, e1 ;; e2)

where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))
V([t1

π∼ t2]ji , p, e) = SPLIT(i, p, e, π1(e), π2(e)) � (V(t1, p, π1(e)) �� V(t2, p, π2(e)))�
JOIN(j − 1, p, e1, e2, e1 ‖ e2)

where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))

Fig. 7. Event semantics

The R(t, p, e) relation is verified to be both irreflexive and transitive, demon-
strating it is a strict partial order.

Lemma 7 (Irreflexive). ¬V(t, p, e) : v ≺ v.

Lemma 8 (Transitive). V(t, p, e) : v1 ≺ v2 and V(t, p, e) : v2 ≺ v3 implies
V(t, p, e) : v1 ≺ v3.

Evaluating t is shown to include v if and only if v is associated with t.
This ensures that all events associated with t are accounted for in the evaluation
relation and that the evaluation relation does not introduce events not associated
with t. Thus R(t, p, e) is a strict partial order for the set {v | t �p

e v}.

Lemma 9 (Correspondence). v ∈ V(t, p, e) iff t �p
e v.

Figure 7 defines event semantics in terms of the term being processed, the
place managing execution, and the initial evidence. Measurement terms and
evidence operations trivially translate into their corresponding atomic events
whose output is the corresponding measurement or calculated result.
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Simple sequential execution t = (t1 → t2) is defined using the canonical
method where output evidence from the first operation is used as input to the
second. The before operator (�) ensures that all events from t1 complete in the
order specified by R(t, p, e) before events from t2 start. Note the appearance of
evidence semantics in the definition to calculate event output in the canonical
fashion.

Sequential execution with data splitting t = (t1
π≺ t2) is defined by again

using the before operator to ensure t1 events complete as specified by R(t, p, e)
before events from t2 begin. The distinction from simple sequential execution is
using π1 and π2 from π to split evidence between t1 and t2. The SPLIT event
routes evidence to t1 and t2 while JOIN composes results indicating sequential
execution.

Parallel execution with data splitting (t1
π∼ t2) is defined using split and

join events. Again π1 and π2 determine how evidence is routed to the composed
posets. The merge operator (��) specifies parallel composition while respecting
the orders specified for t1 and t2. The final � operator ensures that both posets
are ordered before JOIN.

The @p t operation responsible for making requests of other places is defined
using communication events. The protocol term @q t evaluated by p results in
an event poset where: (i) p and q synchronize on a request for q to perform t; (ii)
q runs t; (iii) p and q synchronize on the reply back to p sending the resulting
evidence. The before operator (�) ensures that each sequential step completes
before moving to the next.

Definition 10. The output evidence associated with an event is the right-most
evidence used to construct the event.

Lemma 11. V(t, p, e) always has a unique maximal event emax, and the output
of emax is Ē(t, p, e).

Lemma 11 shows that evaluating a term with the evidence semantics of Fig. 3
produces the same evidence as evaluating the same term with the event seman-
tics of Fig. 7. Every annotated term has a unique maximal event as defined by
V(t, p, e) implying that each finite sequence of events must have a last event.
The evidence associated with that maximal event represents evidence produced
by any event sequence satisfying the partial order. Additionally, that evidence
is equal to the evidence produced by Ē(t, p, e) for the same term, place and
evidence. Lemma 11 proves that evaluating t in place p results in the same evi-
dence using both the evidence and event semantics. Specifically, that Ē(t, p, e)
and V(t, p, e) are weakly bisimilar, producing the same result.

6 Small-Step Semantics

The small-step semantics for Copland is defined as a labeled transition system
whose states represent protocol execution states and whose labels represent events
interacting with the execution environment. The single-step transition relation is
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s1
�� s2, where s1 and s2 are states and � is either an event or τ denoting a silent

transition. The transition s1
�� s2 says that a system in state s1 will transition in

one step to state s2 engaging in the observable event, v, or no event when � = τ .
The relation s1

c�∗ s2 is the reflexive, transitive closure of the single-step relation.
c is called an event trace and is the sequence of events resulting from each state
transition. The transition s1

c�∗ s2 says that a system in state s1 will transition
to state s2 in zero or more steps engaging in the event sequence c.

The grammar defining the set of states, S, is

S ← C(T̄ , P,E) | D(P,E) | A(N, P, S) | LS(S, T̄ )
| BS�(N, S, T̄ , P,E) | BSr(N, E, S) | BP(N, S, S),

where P is the syntactic category for places, E is for evidence, and T̄ is for
annotated terms. The transition relation for phrases is presented in Fig. 8.

State C(t, p, e) is a configuration state defining the start of evaluating t at
p with initial evidence e. Its complement is the stop state D(p, e′) defining the
end of evaluation in p with final evidence e′. Assertion C(t, p, e)

c�∗ D(p, e′)
represents evaluating t at p resulting in evidence e′ and event trace c.

A configuration for an atomic term transitions in one step to a done state
containing measured or computed evidence after executing an event. For exam-
ple, the state C([USM ā]i+1

i , p, e) transitions to D(p,Up(e)) after the single event
USM(i, p, ā, e,Up(e)) performs the represented measurement. Similarly, the state
C([CPY]i+1

i , p, e) transitions to D(p, e) after the single event CPY(i, p, e) copies
the evidence.

The state A(j − 1, p, s) occurs while evaluating an [@q t]ji term and is used
to remember the number to be used to construct a reply event and the place
to send the result of evaluating t at q after the reply event. A configuration
state C(@q t, p, e) starts the evaluation of @q t by p and transitions immediately
to A(j − 1, p, C(t, q, e)) after executing the request event REQ(i, p, q, e). The
nested state C(t, q, e) represents remote term execution. Evaluation proceeds
with A(j − 1, p, s) transitioning to A(j − 1, p, s′) when s

v� s′. Any event v

associated with s
v� s′ is also associated with the transition A(j − 1, p, s) v�

A(j − 1, p, s′) and will contribute to the trace. When a state A(j −1, p,D(q, e′))
results, remote execution completes and the result of q evaluating t as requested
by p is D(p, e′) after event RPY(j − 1, p, q, e′).

The state LS(s1, t2) is associated with evaluating (t1 → t2). State s1 repre-
sents the current state of term t1 and t2 is the second term waiting for evalua-
tion. The state C([t1 → t2]

j
i , p, s) transitions to LS(C(t1, p, e), t2) representing t1

ready for evaluation and t2 waiting. The annotation is ignored in this transition
because the transitions are silent. Subsequent transitions evaluate C(t1, p, e) until
reaching state LS(D(p, e1), t2) after producing event trace v1. This state silently
transitions to C(t2, p, e1) configuring t2 for evaluation using e1 as initial evidence.
t2 evaluates in a similar fashion resulting in e2 and trace v2. State D(p, e2) is the
final state with e2 as evidence having engaged in the concatenation of v1 and v2,
v1 ∗ v2.



210 J. D. Ramsdell et al.

For atomic terms:

C([CPY]i+1
i , p, e) v D(p, e) [v = CPY(i, p, e)]

C([USM ā]i+1
i , p, e) v D(p,Up(e)) [v = USM(i, p, ā, e,Up(e))]

C([KIM q ā]i+1
i , p, e) v D(p,Kq

p(e)) [v = KIM(i, p, ā, e,Kq
p(e))]

C([SIG]i+1
i , p, e) v D(p, [[e]]p) [v = SIG(i, p, e, [[e]]p)]

C([HSH]i+1
i , p, e) v D(p,#p e) [v = HSH(i, p, e,#p e)]

For @q t:

C([@q t]ji , p, e) v A(j − 1, p, C(t, q, e)) [v = REQ(i, p, q, e)]

A(i, p, s1)
v A(i, p, s2) if s1

v
s2

A(i, p, D(q, e)) v D(p, e) [v = RPY(i, p, q, e)]

For t1 t2:

C([t1 t2]ji , p, e) τ LS(C(t1, p, e), t2)

LS(s1, t2) v LS(s2, t2) if s1
v

s2

LS(D(p, e), t) τ C(t, p, e)

For t1
s≺ t2:

C([t1 s≺ t2]ji , p, e) v BS�(j − 1, C(t1, p, π1(e)), t2, p, π2(e))

[v = SPLIT(i, p, e, π1(e), π2(e))]

BS�(i, s1, t, p, e) v BS�(i, s2, t, p, e) if s1
v

s2

BS�(i, D(p, e), t, p′, e′) τ BSr(i, e, C(t, p′, e′))

BSr(i, e, s1)
v BSr(i, e, s2) if s1

v
s2

BSr(i, e1, D(p, e2))
v D(p, e1 ;; e2) [v = JOIN(i, p, e1, e2, e1 ;; e2)]

For t1
s∼ t2:

C([t1 s∼ t2]ji , p, e) v BP(j − 1, C(t1, p, π1(e)), C(t2, p, π2(e)))

[v = SPLIT(i, p, e, π1(e), π2(e))]

BP(i, S, s1)
v BP(i, S, s2) if s1

v
s2

BP(i, s1, S)
v BP(i, s2, S) if s1

v
s2

BP(i, D(p, e1), D(p, e2))
v D(p, e1 ‖ e2) [v = JOIN(i, p, e1, e2, e1 ‖ e2)]

Fig. 8. Labeled transition system

States BS�(j − 1, s, t, p, e) and BSr(j − 1, e, s) are associated with evalu-
ating the left and right subterms of [t1

π≺ t2]
j
i respectively. Recall that t1

π≺
t2 differs from t1 → t2 because the initial evidence for t1

π≺ t2 is split
between t1 and t2 and the resulting evidence is the sequential composition
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of evidence from t1 and t2. The configuration state C([t1
π≺ t2]

j
i , p, e) transi-

tions immediately to BS�(j − 1, C(t1, p, π1(e)), t2, p, π2(e)) after the split event
SPLIT(i, p, e, π1(e), π2(e)), where π = (π1, π2). This state captures the initial
configuration of t1 ready to evaluate with evidence π1(e) along with t2 wait-
ing to execute with evidence π2(e) after t1 completes. Evaluation proceeds
with state BS�(j − 1, s, t2, p, π2(e)) transitioning to BS�(j − 1, s′, t2, p, π2(e))
after event v when s

v� s′. After one or more such transitions a state
BS�(j−1,D(p, e′

1), t, p, e2) is reached after event sequence v1 indicating that eval-
uating t1 has ended and t2 should begin. This state transitions to BSr(j−1, e′

1, s)
with s initially C(t2, p, π2(e)) and e′

1 being the evidence from t1. This state will
transition repeatedly until a state BSr(j − 1, e′

1,D(p, e′
2)) results after trace v2

representing completion of t2. Both t1 and t2 are complete with evidence e′
1 and

e′
2 and evidence must be composed. The final state transitions to D(p, e1 ;; e2)

after the join event JOIN(j − 1, p, e1, e2, e1 ;; e2) where en = Ē(tn, p, πn(e)).
State BP(j − 1, s1, s2) is associated with parallel evaluation of t1 and t2.

The configuration state C([t1
π∼ t2]

j
i , p, e) immediately transitions to BP(j −

1, C(t1, p, π1(e)), C(t2, p, π2(e))) after the split event SPLIT(i, p, e, π1(e), π2(e)).
Note that in the state BP(j−1, C(t1, p, π1(e)), C(t2, p, π2(e))) configuration states
for both t1 and t2 can evaluate. More generally in any state BP(j − 1, s1, s2)
evaluating either s1 and s2 may cause the state to transition. When evaluation
reaches a term of the form BP(j − 1,D(p, e′

1),D(p, e′
2)) both term evaluations

are complete. This final state transitions to D(p, e1 ‖ e2) after the join event
JOIN(j − 1, p, e1, e2, e1 ‖ e2).

We prove Correctness, Progress, and Termination with respect to this transi-
tion system. Correctness defines congruence between the small-step operational
semantics and the denotational evidence semantics. Specifically, if the multi-step
evaluation relation maps state C(t, p, e) to D(p, e′) then Ē(t, p, e) = e′.

Lemma 12 (Correctness). If C(t, p, e)
c�∗ D(p, e′) then Ē(t, p, e) = e′.

Progress states that every state is either a stop state of the form D(p, e) or it
can be evaluated. With the Progress lemma we know that there exist no “stuck”
states in the operational semantics.

Lemma 13 (Progress). Either s1 = D(p, e) for some p and e or s1
v� s2 for

some v and s2.

Termination states that any configuration state will transition to a done state
of the form D(p, e) in a finite number of steps. This is a strong condition that
assures evaluation of any well-formed term will terminate.

Lemma 14 (Termination). For some n, C(t, p, e)
c�n D(p, e′).

7 Proof Summary

The ordering of events is a critically important property of attestation systems.
Even when measurement events properly execute individually, their ordering
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is what establishes trust chains. If a component performs measurement before
being measured, any trust in that component and subsequent components is lost.

Figure 1 shows phrases denoted as event posets and defined operationally as
a labeled transition system. The event posets define legal orderings of events
in traces while the LTS defines traces associated with phrase evaluation. The
remaining theoretical result is proving that the small-step semantics produces
traces compatible with the partial order semantics.

To present event sequences we use the classical notation 〈v1, v2, . . . , vn〉 for
sequence construction and c ↓ i to select the ith element from sequence c. The
concatenation of c1 and c2 is c1 ∗ c2. Event v is earlier than event v′ in trace c,
written v �c v′, iff there exists an i and j such that i < j and c ↓ i = v and
c ↓ j = v′.

The main correctness theorem states that if some term t evaluates to evidence
e′ after trace c and two events v and v′ from c are ordered by the event semantics,
then that order is guaranteed in c. Said differently, if the event semantics con-
strains two events, then the small-step LTS semantics respects that constraint.
This theorem is stated formally in Theorem 15.

Theorem 15 (Correctness). If C(t, p, e)
c�∗ D(p, e′) and V(t, p, e) : v ≺ v′,

then v �c v′.

The proof is done in two steps using a big-step semantics defining traces
for individual phrases as an intermediary. The inductive structure of the big-
step semantics more closely matches the inductive structure of the partial order
semantics, easing the proofs about the relation between the two.

The intermediate big-step semantics is specified as a relation between anno-
tated term t, place p, evidence e, and trace c, written t �p

e c. The structure of
the definition is similar to the structure of the � relation in Fig. 6. Most cases
of the definition are straightforward event sequences taken from the small-step
semantics.

For atomic actions, the associated sequence is a single event implementing
the action. As an illustrative example, USM ā is associated with

[USM ā]i+1
i �p

e 〈USM(i, p, ā, e,Up(e))〉.

For remote actions, @q t, the associated trace starts with a request event followed
by the trace c executed remotely and ending with a reply event:

[@q t]ji �p
e 〈REQ(i, p, q, e)〉 ∗ c ∗ 〈RPY(j − 1, p, q, Ē(t, q, e))〉 if t �q

e c.

For sequential actions, (t1 → t2), the associated trace starts with the trace c1
associated with t1 and ends with the trace c2 associated with t2 starting with
evidence e1 from c1:

[t1 → t2]
j
i �p

e c1 ∗ c2 if t1 �p
e c1 and t2 �p

e1
c2,

where e1 = Ē(t1, p, e).
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For sequential branching, (t1
π≺ t2), the associated trace starts with a split event

and continues with trace c1 associated with t1 starting with π1(e) followed by
trace c2 associated with t2 starting with π2(e):

[(t1
π≺ t2)]

j
i �p

e 〈v1〉 ∗ c1 ∗ c2 ∗ 〈v2〉 if t1 �p
π1(e)

c1 and t2 �p
π2(e)

c2,

where
v1 = SPLIT(i, p, e, π1(e), π2(e))
v2 = JOIN(j − 1, p, e1, e2, e1 ;; e2)
e1 = Ē(t1, p, π1(e))
e2 = Ē(t2, p, π2(e)).

The case for parallel branching, (t1
π∼ t2), requires additional work to capture

parallel execution semantics using trace interleaving. We write il(c, c′, c′′) to
assert that trace c is a result of interleaving c′ with c′′.

Definition 16 (Interleave). il(c, c′, c′′) is the smallest relation such that

1. il(c, 〈〉, c) and il(c, c, 〈〉);
2. il(〈v〉 ∗ c, 〈v〉 ∗ c′, c′′) if il(c, c′, c′′); and
3. il(〈v〉 ∗ c, c′, 〈v〉 ∗ c′′) if il(c, c′, c′′).

When c is an interleaving of c′ and c′′, v1 �c′ v2 implies v1 �c v2 and v1 �c′′

v2 implies v1 �c v2, but the order of events in c is otherwise unconstrained.
With interleaving defined, the trace for (t1

π∼ t2) begins with a split operation
and continues with an interleaving of c1 and c2 associated with t1 and t2 starting
with π1(e) and π2(e) respectively. The trace ends with a join event when both
interleaved traces end:

[t1
π∼ t2]

j
i �p

e 〈v1〉 ∗ c ∗ 〈v2〉 if t1 �p
π1(e)

c′, t2 �p
π2(e)

c′′, and il(c, c′, c′′),

where
v1 = SPLIT(i, p, e, π1(e), π2(e))
v2 = JOIN(j − 1, p, e1, e2, e1 ‖ e2)
e1 = Ē(t1, p, π1(e))
e2 = Ē(t2, p, π2(e)).

The following two lemmas show that every trace in the big-step semantics
contains the correct events. Lemma 17 asserts that the right number of events
occurs and Lemma 18 asserts that all events do in fact occur in the trace.

Lemma 17. [t]ji �p
e c implies the length of c is j − i.

Lemma 18. t �p
e c implies t �p

e v iff for some i, v = c ↓ i.

The first step in the proof of Theorem 15 is to show that a trace of the small-
step semantics is also a trace of the big-step semantics as shown in Lemma 19.
The lemma asserts that any trace c resulting from evaluating t is also related to
t in the big-step semantics.
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Lemma 19. C(t, p, e)
c�∗ D(p, e′) implies t �p

e c.

The next step is to show that if c is a trace of the big-step semantics, then
that trace is compatible with the partial order semantics.

Lemma 20. If t �p
e c and V(t, p, e) : v ≺ v′, then v �c v′.

The proof of Theorem 15 follows from a transitive composition of Lemmas 19
and 20.

The real value of Theorem 15 is that it triangulates specifications, imple-
mentations, and formal analysis as depicted in Fig. 1. On one hand, the opera-
tional semantics is immediately implementable. This allows us to explicitly test
and experiment with alternative options as specified in Copland. On the other
hand, however, simple testing is not sufficient to understand the trust properties
provided by alternative options. It is better to offer potential users the ability
to analyze Copland phrases to establish (or refute) desired trust properties.
This is the primary purpose of the event poset semantics. Our prior work on the
analytic principles of layered attestation [17,18] is based on partially ordered
sets of measurement and processing events. That work details how to charac-
terize what an adversary would have to do in order to escape detection by a
given collection of events. In particular, it establishes the fact that bottom-up
strategies for measurement and evidence bundling force an adversary to perform
either recent or deep corruptions. Recent corruptions must occur within a small
time window, so it intuitively raises the bar for an adversary. Similarly, deep
corruptions burrow into lower (and presumably better protected) systems layers
also raising the bar for the adversary.

Although the event posets in Copland’s denotational semantics are some-
what richer than those in [17,18], the reasoning principles can easily be adapted
to this richer setting. This enables a verification methodology in which Copland
phrases are compiled to event posets, then analyzed according to these princi-
ples. In this way, the relative strength of Copland phrases could be directly
compared according to the trust properties they guarantee. Theorem 15 ensures
that any conclusions made on the basis of this static analysis must also hold
for dynamic executions conforming to the operational semantics. It essentially
transfers formal guarantees into the world of concrete implementations. We are
currently exploring methods to more explicitly leverage such formal analysis to
help Maat users write local policies based on the relative strength of Copland
phrases.

8 Related Work

The concept of adapting an attestation to the layered structure of a target sys-
tem is not new. The concept is already present in attestation systems like trusted
boot [15] and Integrity Measurement Architecture (IMA) [19] which leverage a
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layered architecture to create static, boot-time or load-time measurements of sys-
tem components. Other solutions have designed layered architectures to enable
attestation of the runtime state of a system [10,22]. A major focus is on informa-
tion flow integrity properties since this allows fine-grained, local measurements
to be composed without having to measure the entire system [20]. The main
contrast between this line of research and our work is that they fix the structure
of an attestation based on the structure of the target architecture, whereas in
our work, we support extensible attestation specifications that can be altered to
suit many different architectures and many different contexts for trust decisions.

Coker et al. [4] present a general approach for using virtualization to achieve
a layered architecture, and it presents generic principles for remote attestation
suggesting the possibility of diverse, policy-based orchestrations of attestations.
These principles have recently been extended in [13] in the context of cloud
systems built with Trusted Platform Modules (TPMs) and virtual TPMs [9].

Several implementations of measurement and attestation (M&A) frameworks
have been proposed to address the need for a central service to manage policies
for the orchestration and collection of integrity evidence. The Maat framework,
as described in Sect. 2, is being utilized by the authors as a testing ground for
Copland. Maat provides a pluggable interface for Attestation Service Providers
(ASPs), functional units of measurement which are executed by Attestation
Protocol Blocks (APBs) after a negotiation between an attester and appraiser
machine [16]. Another architecture, given in [8], implements a policy mechanism
designed to allow the appraiser to ask for different conditions to be satisfied by
the target for different types of interactions. The main focus is on determining
suitability of the target system to handle sensitive data. Negotiation between
systems and frameworks, and the supporting policy specification, are examples
of places where Copland can be leveraged to provide a common language and
understanding of attestation guarantees.

Another line of research has focused on hardware/software co-design for
embedded devices to enable remote attestation on platforms that are constrained
in various ways [2,6,7]. For example, the absence of a TPM can increase an adver-
sary’s ability to forge evidence. A careful co-design of hardware and software
allows them to tailor attestation protocols to the particular structure of a target
device. More recently, Multiple-Tier Remote Attestation (MTRA) extends this
work with a protocol that is specifically targeted for the attestation of hetero-
geneous IoT networks [21]. This protocol uses a preparation stage to configure
attestations where more-capable devices (those with TPMs, for example) pro-
vide a makeshift root of trust for less-capable devices and measurement of the
entire network is distributed across the more-capable devices. We believe that
Copland would be beneficial in specifying the complex set of actions required
of these heterogeneous networks.

Finally, there has been some work on the semantics of attestation. Datta
et al. [5] introduces a formal logic for trusted computing systems. Its semantics
is similar to our operational semantics in that it works as a transition system
on state configurations. The underlying programming language was designed
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specifically for the logic, and is considerably more complex than Copland.
It was not designed to be used by implementations as part of a negotiation.
Also, it seems the logic has only been applied to static measurements such as
trusted boot. We also previously developed a formal approach to the seman-
tics of dynamic measurement [17,18]. In this work we characterize the benefit
of a bottom-up measurement strategy as constraining the adversary to corrupt
quickly or deeply. These results are obtained based on a partial order of events
consisting of measurements and evidence bundling. As discussed above, this basis
is similar to our partially ordered event semantics. We explicitly provide such a
semantics to leverage the formal results that can be obtained by such analysis.
While our set of events is richer, we expect the methods of this line of research
to apply.

9 Conclusion and Ongoing Work

Copland serves as a basis for discussing the formal properties of attestation
protocols under composition. We have described the denotational semantics of
Copland by mapping phrases to evidence and to partially ordered event sets
describing events associated with a phrase and constraints on event ordering.
While the denotational semantics does not specify unique traces, it specifies
event orderings mandatory for believing evidence resulting from evaluation.

We have described the operational semantics of Copland by associating
phrases with a labeled transition system. States capture evidence and order exe-
cution while labels on transitions describe resulting events. The transitive closure
of the LTS transition function describes traces associated with LTS execution.

We then show the small-step semantics generates traces that obey partial
orderings specified by the denotational semantics. Furthermore, we show those
orderings are preserved under protocol composition. This result is vital to the
correctness of attestation outcomes whose validity is equally dependent on result-
ing evidence and the proper ordering of evidence gathering events.

Beyond the correctness proof, the most impactful contribution of Copland
semantics is a foundation for testing and experimenting with layered attesta-
tion protocols, pushing the bounds of complexity and diversity of application.
We are actively exploring advanced attestation scenarios between Maat Attesta-
tion Managers (AMs). Recall from the introduction that Maat is a policy-based
measurement and attestation (M&A) framework which provides a centralized,
pluggable service to gather and report integrity measurements [16]. The Maat
team is leveraging Copland to test attestation scenarios involving the configu-
ration of multiple instances of Maat in multi-realm and multi-party scenarios. In
addition to its application to traditional Linux platforms, the Maat framework
has been applied to IoT device platforms, where different configurations due to
limited resources were explored [3]. We believe frameworks such as Maat pro-
vide a rich testing ground for the application of Copland as the basis of policy
specification and negotiation across many kinds of system architectures, and are
feeding the lessons learned in this application back into the on-going Copland
research.
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The authors are also using Copland as an implementation language for
remote attestation protocols in other systems. A collection of Copland inter-
preters written in Haskell, F# and CakeML [12] running on Linux, Windows 10
and seL4 [11] provide a mechanism for executing Copland phrases. Each inter-
preter forms the core of an AM that receives phrases, calls the interpreter, and
returns evidence. Additionally, the AMs maintain and protect keys associated
places and policies mapping USM and KIM instances to specific implementa-
tions. Policies are critically important as they describe details of measurers held
abstract within a phrase. Policies will eventually play a central role in negotiat-
ing attestation protocols among the various AMs implementing complex, layered
attestations. A common JSON exchange format allows exchange of phrases and
evidence among AMs running on different systems.

Of particular note, the CakeML interpreter targeting the seL4 platform will
be formally verified with respect to the formal Copland semantics. CakeML
implements a formally verified fragment of ML in the HOL4 proof system while
seL4 provides a verified microkernel with VMM support. Verifying the Copland
CakeML implementation and individual Copland phrases requires embedding
the CakeML semantics in Coq. The Copland implementation will then be ver-
ified with respect to the formal semantics. Additionally, the Coq semantics sup-
ports proof search techniques for synthesizing Copland phrases. Running the
CakeML implementation on the seL4 platform with formally synthesized phrases
provides a verified attestation platform that may be retargeted to any environ-
ment supporting seL4.

As we continue exploring the richness of layered attestation we are also devel-
oping type systems and static checkers that determine correctness of specific
protocols and protocol interpreters and compilers that produce provably correct
results relative to Copland semantics. We are considering extensions to Cop-
land that include nonces, lambda expressions, keys, and TPM interactions to
represent a richer set of protocols. Without this formal semantics, it would be
impossible to consider the correctness of such extensions.

A Annotated Terms

As noted in Sect. 4, when t is annotated by i and j, we write [t]ji . The annotations
are used in the Coq proofs to construct sequences of unique events associated
with collecting the evidence specified by the term.
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anno(i,CPY) = (i + 1, [CPY]i+1
i )

anno(i,KIM p ā) = (i + 1, [KIM p ā]i+1
i )

anno(i,USM ā) = (i + 1, [USM ā]i+1
i )

anno(i, SIG) = (i + 1, [SIG]i+1
i )

anno(i,HSH) = (i + 1, [HSH]i+1
i )

anno(i,@p t) =
let (j, a) anno(i + 1, t) in
anno(j + 1, [@p a]j+1

i )
anno(i, t1 t2) =

let (j, a1) anno(i, t1) in
let (k, a2) anno(j, t2) in
anno(k, [a1 a2]ki )

anno(i, t1
s≺ t2) =

let (j, a1) anno(i + 1, t1) in
let (k, a2) anno(j, t2) in
anno(k + 1, [a1

s≺ a2]k+1
i )

anno(i, t1
s∼ t2) =

let (j, a1) anno(i + 1, t1) in
let (k, a2) anno(j, t2) in
anno(k + 1, [a1

s∼ a2]k+1
i )

Fig. 9. Term annotation

Terms are annotated using the function displayed in Fig. 9. An annotated
term for t = KIM p ā → SIG is

anno(0, t) = (2, [[KIM p ā]10 → [SIG]21]
2
0),

and when t = @p USM ā,

anno(0, t) = (3, [@p [USM ā]21]
3
0).

Lemma 21. anno(i, t) ∈ Ti.

B Coq Cross Reference

Table 1 matches the contents of a figure with its definition in the Coq proofs.
Table 2 does the same for lemmas, definitions, and the theorem.

Table 1. Coq figure cross reference

Fig. 2: Term.Term Fig. 3: Term.eval Fig. 4: Term.well founded

Fig. 5: Term.Ev Fig. 6: Term.events Fig. 7: Term system.ev evsys

Fig. 8: LTS.step Fig. 9: Term.anno
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Table 2. Coq cross reference

Lem. 1: Term.event range

Lem. 2: Term.events injective

Lem. 3: Term.events range event

Def. 4: Event system.prec

Lem. 7: Event system.evsys irreflexive

Lem. 8: Event system.evsys transitive

Lem. 9: Term system.evsys events

Def. 10: Term system.out ev

Lem. 11: Term system.max eval

Lem. 12: LTS.steps preserve eval

Lem. 13: LTS.never stuck

Lem. 14: LTS.steps to stop

Thm. 15: Main.ordered

Def. 16: Trace.shuffle

Lem. 17: Trace.trace length

Lem. 18: Trace.trace events

Lem. 19: Main.lstar trace

Lem. 20: Trace.trace order
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source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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